The T-s diagram

Usually, three groups of fluids are distinguished: dry (positive slope), isentropic (zero slope) and wet (negative slope) fluids. For low temperature organic Rankine cycle systems and particularly with low power output levels, wet fluids like water, methanol or ethanol are not suitable. This category of fluids requires a superheat in order to avoid moisture after the expansion process. Fortunately, there are dry and isentropic fluids that do not exhibit excessive moisture after the expansion of the vapor through the expansion device. When isentropic fluids are used, isentropic expansions of saturated organic vapors result in saturated or superheated vapor regions so that erosion of the blades is avoided. Dry fluids with high positive slopes yield low efficiencies. In order to overcome this drawback, a regenerative heat exchanger should be used in parallel with the evaporator and condenser to raise the temperature of the liquid entering the evaporator. An ideal working fluid for ORCs is likely to have a vertical vapor saturated line and a vertical liquid saturated line so that all the heat input transfer should take place during the phase change and the heat rejection at the condenser occurs at the minimum temperature [1, 2, 6]. Fig.1 shows the T-s diagram for an ideal working fluid.

ik

Подпись: 1

Подпись: 3 Подпись: 2

T [K] [15]

s [kJ/kg. K]

Fig. 1: T-s diagram for the ideal working fluid

Substance

Physical data

Safety data

Environmental data

Molecular Mass (kg/kmol)

a T

1bp

(°C)

b t

crit

(°C)

cP

crit

(MPa)

ASHRAE 34 safety group

Atmospheric life time (yr)

dODP

eGWP (100 yr)

RC318

200.03

-6.0

115.2

2.778

A1

3200

0

10250

R600a

58.12

-11.7

135

3.647

A3

0.019

0

~20

R114

170.92

3.6

145.7

3.289

A1

300

1.000

10040

R600

58.12

-0.5

152

3.796

A3

0.018

0

~20

R601

72.15

36.1

196.5

3.364

0.01

0

~20

R113

187.38

47.6

214.1

3.439

A1

85

1.000

6130

Cyclohexane

84.16

80.7

280.5

4.075

A3

n. a

n. a

n. a

R290

44.10

-42.1

96.68

4.247

A3

0.041

0

~20

R407C

86.20

-43.6

86.79

4.597

A1

n. a

0

1800

R32

52.02

-51.7

78.11

5.784

A2

4.9

0

675

R500

99.30

-33.6

105.5

4.455

A1

n. a

0.738

8100

R152a

66.05

-24.0

113.3

4.520

A2

1.4

0

124

R717 (Ammonia)

17.03

-33.3

132.3

11.333

B2

0.01

0

<1

Ethanol

46.07

78.4

240.8

6.148

n. a

n. a

n. a

n. a

Methanol

32.04

64.4

240.2

8.104

n. a

n. a

n. a

n. a

R718 (Water)

10.2

100

374

22.064

A1

n. a

0

<1

R134a

102.03

-26.1

101

4.059

A1

14.0

0

1430

R12

120.91

-29.8

112

4.114

A1

100

1.000

10890

R123

152.93

27.8

183.7

3.668

B1

1.3

0.020

77

R141b

116.95

32.0

204.2

4.249

n. a

9.3

0.120

725

R245fa

134.05

15.3

154.1

3.64

B1

8.8

0

820

R236fa

152.0

-1.4

124.0

3.20

209

0

6300

R227ea

170.0

-17.5

102.0

2.95

36.5

0

2900

a Tbp : Normal boiling point; b Tcrit: Critical temperature; c Pcrit: Critical pressure;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

dODP: Ozone depletion potential, relative to R-11; eGWP: Global warming potential, relative to CO2. n. a: non available