Как выбрать гостиницу для кошек
14 декабря, 2021
The crucial factor concerning the application of thermotropic glazing is the switching range. For thermotropic hydrogels, thermotropic polymer blends and thermotropic systems with fixed domains maximum switching ranges of 77%, 52% and 25% are achieved, respectively. According to this for an all polymeric flat-plate collector with twin-wall sheet glazing and black absorber thermotropic hydrogels, thermotropic polymer blends and thermotropic systems with fixed domains would limit maximum absorber temperatures to 75, 90 and 125°C, respectively (assuming 85% solar transmittance in clear state) [1]. This allows for the application of cost-efficient plastics with more or less advanced engineering properties and temperature-stability as absorber materials for solar collectors. However, no product is commercially available today, which exhibits switching temperatures, the switching performance and the long-term stability needed for solar thermal applications. Thus further research and development on thermotropic materials is required to make the systems ready for the solar thermal market.
References
[1] G. M. Wallner, K. Resch, R. Hausner, Solar Energy Materials and Solar Cells, 92 (2008) 614-620.
[2] P. Nitz, H. Hartwig, Solar Energy, 79 (2005) 573-582.
[3] A. Seeboth, J. Schneider, A. Patzak, Solar Energy Materials and Solar Cells, 60 (2000) 263-277.
[4] H. Watanabe, Solar Energy Materials and Solar Cells, 54 (1998) 203-211.
[5] P. Nitz, H. R. Wilson (2008). In Proceedings of 2nd Leobner Symposium Polymeric Solar Materials, Leoben, Austria, pp. XIII-1-XIII-6.
[6] K. Resch, G. M. Wallner, R. W. Lang, Macromolecular Symposia, 265 (2008) 49-60.
[7] A. Beck, T. Hoffmann, W. Korner, J. Fricke, Solar Energy, 50 (1993) 407-414.
[8] A. Beck, W. Korner, H. Scheller, J. Fricke, W. J. Platzer, V. Wittwer, Solar Energy Materials and Solar Cells, 36 (1995) 339-347.
[9] D. Chahroudi, (1995). US 5404245.
[10] D. Chahroudi, (1983). US 4389452.
[11] L. M. Geever, D. M. Devine, M. J.D. Nugent, J. E. Kennedy, J. G. Lyons, A. Hanley, C. L. Higginbotham, European Polymer Journal, 42 (2006) 2540-2548.
[12] K. Yamamoto, T. Serizawa, Y. Murakoa, M. Akashi, Journal of Polymer Science: Part A: Polymer Chemistry, 38 (2000), 3674-3681.
[13] G. M. Campese, E. M.G. Rodrigues, E. B. Tambourgi, A. Pessoa, Brazil Journal of Chemical Engineering, 20 (2003), no. 3.
[14] J. H. Lee, D. G. Bucknall, Journal of Polymer Science: Part B: Polymer Physics, 46 (2008) 1450-1462.
[15] H. Okamura, T. Maruyama, S. Masuda, K. Minagawa, T. Mori, Journal of Polymer Research, 9 (2002) 1721.
[16] H. Okamura, S. Masuda, K. Minagawa, T. Mori, M. Tanaka, European Polymer Journal, 38 (2002) 639-644.
[17] WT. Wu, Y. Wang, L. Shi, Q. Zhu, W. Pang, G. Xu, F. Lu, Chemical Physics Letters, 421 (2006) 367-372.
[18] H. Uyama, S. Kobayashi, Chemistry Letters, 9 (1992) 1643-1646.
[19] A. Georg, W. Graf, D. Schweiger, V. Wittwer, P. Nitz, H. R. Wilson, Solar Energy, 62 (1998) 215-228.
[20] H. R. Wilson, SPIE, 2255 (1994) 214-225.
[21] H. R. Wilson, in Grassie K. et al. (Eds) Functional Materials — EUROMAT, vol. 13, Wiley VCH,
Weinheim, pp 221 — 233.
[22] J. Schneider, A. Seeboth, Materialwissenschaft und Werkstofftechnik, 32 (2001) 231-237.
[23] W. Siol, H. J. Otto, U. Terbrack, (1993). EP 0181485.
[24] W. Eck, H. J. Cantow, V. Wittwer, (1993). EP 0559113.
[25] E. Jahns, H. Kroner, W. Schrof, U. Klowdig, (1995). EP 0749465.
[26] A. Goetzberger, M. Muller, M. Goller, Solar Energy, 69 (2000) 45-57.
[27] H. R. Wilson, A. Raicu, P. Nitz, (1996). In Proceedings of Eurosun 1996, Freiburg, Germany, pp. 534-539.
[28] F. S. Buehler, M. Hewel, (1999). EP 0985709.
[29] C. Schwitalla, H. Godeke, H. Konig, (2002). EP 1258504.
[30] K. Resch, G. M. Wallner (2007). In Proceedings of ISES SWC 2007, Beijing, China, pp. 541-545.
[31] Informationsdienst BINE — Schaltbare und regelbare Verglasungen (2002), http://www. bine. info/.