Microclimate characterization

In order to be able to predict expected service life of the component and its materials from the results of accelerated ageing tests, the degradation factors under service conditions need to be assessed by measurements. If only the dose of a particular environmental stress is important then the distribution or frequency function of a degradation factor is of interest.

For measurement of microclimatic variables relevant in the assessment of durability of the static solar materials studied in Task 27, various kinds of climatic data during outdoor ex­posure at different test sites are monitored such as global solar irradiation, UV-radiation, surface temperatures, air humidity, precipitation, time of wetness, wind conditions, and atmospheric corrosivity. Such data will be used to predict expected deterioration in per­formance over time by making use of degradation models developed from results of accel­erated tests. Some results from the measurement of microclimatic data are shown in Table 6 and Figure 5.

Table 6 Atmospheric corrosivity measured at three test sites for outdoor exposure of

Exposure Site of the metal refer­ence specimens

Orientation South/90° — South/45°

First year metallic mass loss

[g/m2]

Copper

Zinc

Carbon steel

ISE, Freiburg, Germany

7.2 — 9.5

2.8 — 4.7

73 — 83

SP, Boras, Sweden

4.0

2.6

43

SPF, Rapperswil, Switzerland

4.0 — 5.2

2.6 — 7.9

71 — 81

Figure 5 Microclimatic data measured during outdoor exposure of solar fagade absorbers at ISE in the IEA Task 27 study. Left diagram: Surface temperature frequency histograms for a black painted and a black chrome absorber; Right diagram: UVA and UVB light doses versus exposure time