Solution procedure

For the radiative thermal resistance between the two slabs of the duct the following relation has been considered:

Г = (Ve1 +1/ є2 — 1)/4oT3

with о Stefan-Boltzmann constant, T = (T1 + T2)/2, є1 and є2 emissivity of the duct’s inner faces, respectively of the slabs A and B.

A detailed description of the used calculation procedure is reported in [8].

In the calculations the following reference dimensions have been considered: L=15 m; h=10 m; d=0.04 m. Assuming Pr=0.72, D~2d=0.08 m, the Eq. (1) is fully satisfied for all values of the Reynolds number (Re<2500) being peculiar to laminar flow.

For a standard situation the following reference climatic conditions have been assumed: Ti=24 °C, T0=28 °C in summer and Ti=20 °C, T0=0 °C in winter; all the graphs reported hereinafter should be meant to refer, unless it is indicated otherwise, to such values.

An iterative calculation procedure has been used to evaluate the quantities defined by the Eq. (2), to take into account the dependence of Г on the temperatures T1 and T2, and also to consider the variability of the air density and viscosity with the temperature T. All calculations have been developed in Maple programming software. For the friction factors Xin and Xou the following values have been considered as reference values: Xin=2 and Xou=4.

As reference values for the thermal resistances re, ri, and Rcd, (see Tab. I) the ones recommended by the technical rule EN ISO 6946 [11] have been chosen. For the considered values of d, Rcd=0.18 m2KW-1 has been assumed.

In the studied cases, the outer slab is supposed to have been realized so that the air infiltrations through the joints and the permeability to air of the used material could be disregarded.