Process studies on the catalytic hydrotreatment of fast pyrolysis oils

1.1 Introduction

In the past, it was assumed that the catalytic hydrotreatment of pyrolysis oils shows strong resemblances with conventional hydrotreatment processes of fossil feeds (hydrodesulphurisation, hydrodenitrogenation) and typical catalysts, process conditions and reactor configuration were taken from these conventional processes (Elliott, 2007). For all, the objective is a reduction of certain elements (oxygen, sulphur, nitrogen) in the feed by the action of hydrogen and a catalyst. However, common reaction conditions for the hydroprocessing of crude oil derivatives cannot be adopted directly for pyrolysis oils. For instance, pyrolysis oil cannot be treated as such at temperatures exceeding 300 oC because of its high charring tendency.

Numerous papers on hydrotreating pyrolysis oil in packed beds and autoclaves were published in the eighties and nineties, and now very recently as well (Elliott, 2007). Specifically the older literature seems rather phenomenological in nature, and merely focuses on ‘fact-finding’. Large differences in operating conditions like in pressure, temperature, residence times and hydrogen consumption are reported. In any case, without active catalyst or (high pressure) hydrogen, significant charring of pyrolysis oil occurs. Reduction of charring is possible by applying a (relatively) low temperature catalytic hydrotreatment at 175 to 250 oC, in which reactive components in the oil are ‘stabilized’. Subsequently, the stable product is further processed at higher temperatures (> 300 oC) and pressures (> 150 bar). High pressures are believed to be essential to keep the water in the pyrolysis oil feed in a liquid state (and as such probably reduce the charring reactions), to promote the solubility of hydrogen in the initially polar bio-oil, and to increase the rate of the actual hydrogenation reactions.