Catalyst studies on the hydrotreatment of fast pyrolysis oil

Well known catalysts for the hydrotreatment of pyrolysis oil are conventional hydrodesulfurisation catalysts such as sulfided NiMo/ Al2O3, CoMo/ Al2O3, and NiMo/ Al2O3- SiO2 (Ferrari et al., 2002; Maity et al., 2000) to cope with the harsh reaction conditions (T > 200 C, aqueous environment with organic acids). Carbon-supported CoMo, or Mo supported on TiO2, ZrO2 and TiO2-ZrO2 mixed oxides (Satterfield&Yang, 1983; Lee&Ollis, 1984) have been tested as well. The latter catalysts all require sulphur in the feed to maintain activity. Pyrolysis oils contain only limited amounts of sulphur (Furimsky, 2000) and sulphur addition would be required during processing to maintain catalytic activity. This will lead to sulfur emissions e. g. in the flue gas, which is not preferred for an environmental point of view.

Non-sulfided, non noble metal catalysts have also been tested for the catalytic hydrotreatment of pyrolysis oil, but to a far lesser extent. The hydrodeoxygenation of phenol over a Ni/SiO2 catalyst has been reported and showed low HDO activity. Horne&Williams (1996) tested ZSM-5 zeolites as the catalyst for the deoxygenation of model compounds such as anisole. Their results, though, showed that anisole is mainly converted into phenol and methyl substituted phenols, and not to the oxygen-depleted compounds. Xu, et al. (2010) tested MoNi/y-Al2O3 (reduced prior to reaction) for the mild hydrotreatment of pyrolysis oil (3 MPa and 200 oC).

Noble metal based catalysts have also been evaluated as substitutes for sulfided catalysts. Examples are Pd on zeolite carriers (Horne&Williams, 1996), Pd on mesoporous CeO2 and ZrO2 (Senol et al., 2005), and Rh on zirconia (Gutierrez et al., 2008). Carbon supports have also been explored (Wildschut et al., 2009b; Wildschut et al., 2010a;, Wildschut et al., 2010b; Venderbosch et al., 2010). We have recently reported exploratory catalyst studies on the upgrading of fast pyrolysis oil by catalytic hydrotreatment using a variety of heterogeneous noble metal catalysts (Ru/C, Ru/TiO2, Ru/Al2O3, Pt/C and Pd/C) and the results were compared to typical hydrotreatment catalysts (sulfided NiMo/ Al2O3 and CoMoAl2O3). The reactions were carried out at temperatures in the range of 250 and 350 °C and pressures between 100 and 200 bar. The Ru/C catalyst appears superior to the classical hydrotreating catalysts with respect to oil yield (up to 60 %-wt.) and deoxygenation level (up to 90 %-wt.) (Figure 2) (Wildschut et al, 2009).

image125

Fig. 2. Catalyst screening studies for noble metal catalysts on various supports

Unfortunately, noble metal catalysts are very expensive and this limits their application potential. The catalytic hydrotreatment of fast pyrolysis oil using much cheaper bimetallic NiCu/8-Al2O3 catalysts with various Ni/Cu ratios (0.32 — 8.1 w/w) at a fixed total metal intake of about 20 wt% was reported recently (Ardiyanti et al., 2009). Hydrotreatment reactions of fast pyrolysis oil (batch autoclave, 1 h at 150 oC followed by 3 h at 350 oC, at 200 bar total pressure) were performed and highest catalyst activity (in terms of H2 uptake per g of Ni) was observed for the catalyst with the lowest Ni loading (5.92Ni!8.2Cu). Product oils with oxygen contents between 10 and 17 wt% were obtained and shown to have improved product properties when compared to the feed.

Recently, we have also shown the potential of homogeneous Ru catalysts for the catalytic upgrading of fast pyrolysis oil fractions (Mahfud et al., 2007a). Fractions were obtained by treatment of the pyrolysis oil with dichloromethane or water. The former approach leads to a dichloromethane layer enriched with the lignin fraction of pyrolysis oil. The dichloromethane fraction was hydrogenated in a biphasic system (dichloromethane/water) using a homogeneous water soluble Ru/tri-phenylphosphine-tris-sulphonate (Ru-TPPTS) catalyst. Analysis revealed that the oxygen content of was lowered considerably and that particularly the amounts of reactive aldehydes were reduced substantially.

The water-soluble fraction of pyrolysis oil, obtained by treatment of fast pyrolysis oil with an excess of water was hydrogenated in a biphasic system with a homogeneous Ru-catalyst (Ru/tri-phenylphosphine, Ru-TPP) dissolved in an apolar solvent (Mahfud et al., 2007b). Initial experiments were conducted with representative, water soluble model compounds like hydroxy acetaldehyde and acetol. The effects of process parameters (e. g. temperature, initial H2 pressure, and initial substrate concentration) were investigated and quantified for acetol using a kinetic model. The hydrogenation of the pyrolysis oil water-soluble fraction using the biphasic system at optimized conditions was performed and significant reductions in the amounts of reactive aldehydes such as hydroxyacetaldehyde and acetol were observed, demonstrating the potential of homogeneous Ru-catalysts to upgrade pyrolysis oils.