Methanol synthesis reactors

Today, the majority of the methanol is synthesised from syngas produced by steam reforming of natural gas (SMR). The synthesis can be done either with heat provided by a furnace where the tubular reactor is located, or by auto-thermal reforming (ATR) combined with steam reforming. Once the natural gas is reformed the resulting synthesis gas can be shift adjusted for its H2/CO ratio and the CO2 decreased to a few percentages as previously specified. The syngas is then fed to a reactor vessel in the presence of a catalyst to produce methanol and water vapor. This crude methanol, which usually contains up to 18% water, plus ethanol and higher alcohols is fed to a distillation plant that consists of a unit that removes the volatiles and a unit that removes the water and higher alcohols. The unreacted syngas is recirculated back to the methanol converter resulting in an overall conversion efficiency of 99%. A generic methanol synthesis process flow diagram (PFD) is shown in the Figure 3.

image113

Fig. 3. Simplified Methanol Synthesis PFD (Spath and Dayton, 2003).

As is the case with Fisher Tropsch synthesis, one of the challenges associated with commercial methanol synthesis is removing the large excess heat of reaction. Methanol synthesis increases at higher temperatures so does the chance for competing side reactions. Controlling and dissipating the heat of reaction and overcoming the equilibrium constraint to maximise the per-pass conversion efficiency are the two main process features that are considered when designing the methanol synthesis reactor, commonly referred to as a methanol converter. Numerous methanol converter designs have been commercialised over the years and these can be roughly separated into two categories: adiabatic or isothermal reactors.

• Adiabatic reactors often imply multiple catalysts beds separated by gas cooling devices, either direct heat exchange or injection of cooled, fresh or recycled syngas.

• The isothermal reactors are designed to continuously remove the heat of the reaction so they operate essentially like a heat exchanger.

Haldor Topsoe low-pressure methanol synthesis process. This process is designed to produce methanol from natural gas or associated gas feedstocks, utilizing a two-step reforming process to generate a syngas mixture feed for the methanol synthesis (Sunggyu, 2007). Associated gas is natural gas produced with crude oil from the same reservoir. It is claimed that the total investment for this process is lower than with the conventional flow scheme based on straight steam reforming of natural gas by approximately 10%, even after considering an oxygen plant. As shown in figure 4, the two stage reforming is conducted by primary reforming in which a preheated mixture of natural gas and steam is reacted, followed by a secondary reforming which further converts the exit gas from the primary reformer with the aid of oxygen that is feed separately. The amount of oxygen required as well as the balance of conversion between the primary and the secondary reformers need to be properly adjusted so that a balanced syngas (in a stoichiometric ratio (2:1) of H2/ CO) is obtained with a low inert content.

image114

Fig. 4. Haldor Topsoe methanol synthesis process (Sunggyu, 2007).

Liquid-Phase methanol process. The liquid phase methanol process was originally developed by Chem. Systems Inc in 1975 (Cybulski, 1994). The R&D of this process was sponsored by the U. S. Department of Energy and Electric Power Research Institute. Commercialised by Air Products and Chemicals Inc and Eastman Chemical Co. in the 1990s, the process is based on the low-pressure methanol synthesis using coal as the source of syngas. Recently, in Quebec (Canada) Enerkem Inc. has developed a liquid phase methanol process using syngas produced from biomass. The chemical reaction is carried out in a slurry reactor using a Cu/ ZnO/ Al2O3 catalyst at temperature ranging from 230 to 260 °C and 50 to 100 atm. The commercial reactor used a liquid entrained reactor in which fine grains of catalyst are slurried in an inert high-boiling oil typically white mineral oil. Pressurized gaseous reactants are dissolved in the oil and the dissolved molecular species are reacted on the catalytic surfaces of the grains present in a slurry. The figure 5 shows the schematic of liquid phase methanol process of Enerkem Inc.

image115

Fig. 5. Enerkem Inc. liquid phase methanol process