Self-heat recuperative distillation

Expanding the self-heat recuperative thermal process to distillation processes in particular (Kansha et al. 2010a, 2010b), a system including not only the distillation column but also the preheating section, is developed in order to minimize the required energy, as shown in Fig. 4. A distillation process can be divided into two sections, namely the preheating and distillation sections, on the basis of functions that balance the heating and cooling load by performing enthalpy and exergy analysis, and the self-heat recuperation technology is applied in these two sections. In the preheating section, one of the streams from the distillation section is a vapor stream and the stream to the distillation section has a vapor — liquid phase that balance the enthalpy of the feed streams and that of the effluent streams in the section. In balancing the enthalpy of the feed and effluent streams in the preheating section, the enthalpy of the streams in the distillation section is automatically balanced. Thus, the reboiler duty is equal to the condenser duty of the distillation column. Therefore, the vapor and liquid sensible heat of the feed streams can be exchanged with the sensible heat of the corresponding effluent streams and the vaporization heat can be exchanged with the condensation heat in each section.

image104

Fig. 4. Self-heat recuperative distillation process a) process flow diagram, b) temperature — heat diagram

Figure 4 (a) shows the structure of a self-heat recuperative distillation process consisting of two standardized modules, namely, the heat circulation module and the distillation module. Note that in each module, the summation of the enthalpy of the feed streams and that of the effluent streams are equal. The feed stream in this integrated process module is represented as stream 1. This stream is heated to its boiling point by the two streams independently recuperating heat of the distillate (12) and bottoms (13) by the heat exchanger (1^2). A distillation column separates the distillate (3) and bottoms (9) from stream 2. The distillate (3) is divided into two streams (4, 12). Stream 4 is compressed adiabatically by a compressor and cooled down by the heat exchanger (2). The pressure and temperature of stream 6 are adjusted by a valve and a cooler (6^7^8), and stream 8 is then fed into the distillation column as a reflux stream. Simultaneously, the bottoms (9) is divided into two streams (10, 13). Stream 10 is heated by the heat exchanger and fed to the distillation column (10^11). Streams 12 and 13 are the effluent streams from the distillation module and return to the heat circulation module. In addition, the cooling duty of the cooler in the distillation module is equal to the compression work of the compressor in the distillation module because of the enthalpy balance in the distillation module.

The effluent stream (12) from the distillation module is compressed adiabatically by a compressor (12^14). Streams 13 and 14 are successively cooled by a heat exchanger. The pressure of stream 17 is adjusted to standard pressure by a valve (17^18), and the effluents are finally cooled to standard temperature by coolers (15^16, 18^19). The sum of the cooling duties of the coolers is equal to the compression work of the compressor in the heat circulation module. Streams 16 and 19 are the products.

Figure 4 (b) shows the temperature and heat diagram for the self-heat recuperative distillation process. In this figure, each number corresponds to the stream numbers in Figure 4 (a), and Ts and Tb are the standard temperature and the boiling temperature of the feed stream, respectively. Both the sensible heat and the latent heat of the feed stream are subsequently exchanged with the sensible and latent heat of effluents in heat exchanger 1. The vaporization heat of the bottoms from the distillation column is exchanged with the condensation heat of the distillate from the distillation column in the distillation module. The heat of streams 4 and 12 are recuperated by the compressors and exchanged with the heat in the module. It can be seen that all the self-heat is exchanged. As a result, the exergy loss of the heat exchangers can be minimized and the energy required by the distillation process is reduced to 1/6-1/8 of that required by the conventional heat exchanged distillation process.