Paving the Road to Algal Biofuels with the Development of a Genetic Infrastructure

Julian N. Rosenberg, Michael J. Betenbaugh and George A. Oyler

Johns Hopkins University United States

1. Introduction

It is anticipated that the global demand for energy will double within the next forty years (Hoffert et al., 1998). This leaves a relatively short period of time for a momentous shift in the fundamental sources of global energy. Nonetheless, satisfying our energy requirements with alternative sources can be achieved while allowing for continued technological progress, economic growth, and political stability over this period. The need for clean, sustainable energy sources is even more urgent when considered in light of the environmental consequences related to the liberation of carbon dioxide from fossil fuels.

For instance, increased production of electricity will undoubtedly necessitate a rapid expansion of nuclear, wind, solar, and hydro — power generation. Even if these sources of energy are aggressively developed, few alternatives appear to be available for the continued expansion of coal-based electricity extending to mid-century; thus, there is a pressing need for mechanisms of carbon dioxide (CO2) abatement. Energy derived from biomass presents a means of both capturing CO2 and reducing the need for a fossil fuel-based infrastructure. As such, bioenergy has the advantage of being carbon neutral and will prove to be an important asset in our repertoire of renewable energy solutions.

In addition to producing energy from sustainable sources that maintain carbon neutrality, the obligation to use energy efficiently has never been more important — not only in our daily lives, but also in the mechanisms through which we will generate energy at large scales in the future. In biological systems, the utilization of energy is accomplished by a cascade of biochemical reactions mediated by tightly regulated metabolic networks, which are substantially more efficient than the internal combustion engine. One of the most important and impressive molecular mechanisms for harvesting energy is the photosynthetic process. While photovoltaic technology has improved considerably in recent decades, the plants and algae that have been refined over billions of years of evolution represent a fully developed living framework for solar energy collection.