Bioethanol and biodiesel advantages and drawbacks

Extensive bioethanol and biodiesel implantation has been followed by a panoply of economic, sociopolitical and environmental issues (Guerrero-Compean, 2008). It is worth noting the strong dependency of these biofuels industries on crops used for human nourishment and the feeding of livestock (UNCTAD, 2010). Although a large number of patents have been proposed to solve many technical problems, the sudden peak in demand for biofuels has uncovered serious technical limitations of the currently used production systems. As a consequence, a growing controversy about the real sustainability and environmental friendliness of the actual biofuels industry has been generated (Fortman et al., 2008; Abdullah et al., 2009; Demirba§, 2009; Yee et al., 2009; Jaruwat et al., 2010).

In addition, the consequences of biofuel production for farming practices or food markets, as well as real greenhouse gases (GHG) emission reduction along the biofuel life cycle, represent an important issue that, frequently, is not clearly treated. Parameters such as the kind of biofuel under study, feedstock, and energy inputs needed to maintain the process of transformation need to be taken into account. Also, the possibility of cogeneration of electricity or the exchange of energy between the biofuel synthesis and the feedstock transformation processes must be added to the model. Thus, wide variations in the net energy gain and consumption of resources can occur owing to the different assumptions made to calculate the overall benefits and drawbacks. Timilsina and collaborators draw a general picture of this issue over the OECD estimations. According to these authors, the most efficient biofuel production scheme is represented by sugarcane-based bioethanol in Brazil, with a 90% GHG reduction with respect to the gasoline equivalent. This high efficiency relies mainly on the high yield of this crop and the usage of sugarcane as an energy source for production plants and the cogeneration of electricity. Second-generation biofuels based on cellulosic feedstocks present a 70-90% GHG reduction relative to gasoline or diesel. Combined with electricity cogeneration, this kind of biofuel could have an even greater effect on GHG reduction, but they are still under development. Ethanol from sugar beet GHG reduction ranges from 40 to 60%, while wheat-based ethanol presents a 30-50% GHG reduction. The corn-based production of bioethanol is the least GHG-reducing biofuel and presents a low efficiency at GHG reductions varying from 0 (even negative in some cases) to 50% compared to gasoline (OECD, 2008; Timilsina & Shrestha, 2010).