Nanotechnology to convert biomass into biofuels

Delinking biofuels production from food crops is a necessary condition to expand the scale of the market penetration of biofuels globally. Among the challenges this strategy faces is the inherent resistance of cellulosic feedstocks to conversion to simpler sugars that can be fermented into ethanol. Here, the promise lies in nano-particles used as immobilizing beds for expensive enzymes that can be used over and over again to breakdown the long chain cellulose polymers into simpler fermentable sugars [16].

The Louisiana Tech University is one among many organizations worldwide engaged in this endeavour, through the work of Dr. James Palmer, in collaborating with fellow professors Dr. Yuri Lvov, Dr. Dale Snow, and Dr. Hisham Hegab [17]. The focus is on non-edible cellulosic biomass, such as wood, grass, stalks, etc, to be converted into ethanol. This approach to produce ethanol can reduce GHG emissions by some 86% over fossils fuels.

The broader field of nanotechnology research into converting biomass into biofuels is growing fast. For example, in 2007 the oil company BP has granted a research fund of $500 million to the University of California, at Berkeley, and the University of Illinois, to explore the conversion of corn, plant material, algae and switch grass into fuel [18].

In the past, Berkeley had used nanotechnology in research for cost-effective solar panels [19]. But, the new Energy Biosciences Institute — EBI created at Berkeley will focus on fuel production with minimum environmental impacts and carbon emissions. A three pronged approach is being employed that begins with technologies for better crop production, improved feedstocks processing and development of new biofuels. The application of this approach aims at developing better feedstocks, breaking down plant material into sugars and their conversion to ethanol. Success along this pathway is expected to lead EBI to investigate the use of nanotechnology to develop other alternative fuels, such as butanol and renewable hydrocarbon fuels.

Another relevant application of nanotechnology is the use of nano-catalysts for the trans­esterification of fatty esters from vegetable oils or animal fats into biodiesel and glycerol [20]. The nano-catalyst spheres replace the commonly used sodium methoxide. The spheres are loaded with acidic catalysts to react with the free fatty acids and basic catalysts to react with the oils. This approach eliminates several production steps of the conventional process, including acid neutralization, water washes and separations. All those steps dissolve the sodium methoxide catalyst so it can’t be used again. In contrast, the catalytic nanospheres can be recovered and recycled. The overall result is a cheaper, simpler and leaner process. In summary, the process claims to be economical, recyclable, to react at mild temperatures and pressures, with both low and high FFA (free fatty acid) feedstock, producing cleaner biodiesel and cleaner glycerol, greatly reducing water consumption and environmental contaminants, and can be used in existing facilities.