The vastness of nanotechnology

Nanotechnology can be simply defined as the discipline of building machines/devices on the scale of molecules, a few Nanometers (10"9m) wide, way smaller than a cell. Table 1 below show some practical applications of nanotechnologies and confirms the vastness of their domain [7]:

In the practically important area of polymers, nanotechnologies originate nano-structured polymers, where applications can be found in support structures; manufacturing processes; diagnostics and therapy; pharmaceuticals; medical and dental prosthesis; and thin films for surface treatment. The main chemicals involved in nano-structured polymers are: poly­oxides; poly-acrylates; poly-vinylics; poly-saccharides; and poly-ethylenes. The main materials incorporated into polymer nano-matrices are silicon, chromium and carbonTurning algae into biofuels

As shown in Fig. 1, biofuels derived from algae offer a great potential in view of the possible high yields and smaller area requirements. In addition, algae can play a role in carbon mitigation, as one way of growing algae is to feed them carbon-dioxide (CO2), besides water and sunlight. Algae can be fed other substrates as well, because to grow, cost-effectively, on carbon dioxide there would be a need of concentrated sources of the gas, such as found in combustion off-gases from fossil fueled power plants.

Oil can form up to 50% of the algae mass, in contrast with the best oil-bearing plants — oil palm trees — where less than 20% of the biomass is made out of foil. Algae carbohydrates can also be made into ethanol or gasified into bio-gas, or methane or hydrogen [9].

But, algae development into biofuels must overcome a number of challenges before algae can become significant sources of commercial biofuels. Since algae also need water to grow,
expansion of algae production may create a dilemma of water versus fuel, similar to food versus fuel dilemma discussed previously. Another challenge is the low natural carbon dioxide concentration in the atmosphere, hence the consideration of additional sources of carbon for algal growth in a commercial biofuels system. One response to these challenges may include the use of nanotechnology to turn algae into biofuels.

As way of examples, in 2009, the company QuantumSphere received a grant from the California Energy Commission to develop a nano-catalyzed algae biogasification. Also in California, the Salton Sea receives large amounts of agricultural runoff, which sometimes create large algae blooms. These algae and similar biomass have been turned experimentally into methane, hydrogen and other gases [10].

One nanotechnology relevant to algae development is the use of nanoparticles as no-harm harvesters of biofuel oils from algae, as illustrated in Fig. 3 [11]. The nano particles are shown on the left hand side of the photograph before the oil pregnant algae are added. The right hand side shows the contacting between the algae and the nano particles, which results in extracting the oil without harming the algae. Maintaining the algae alive can dramatically reduce production costs and the generation cycle.

image38

Fig. 3. Nano-particles harvesting oil from algae without harming the organism

One possible downside of the nano-harvesters is the risk that they may be released into the environment, although the spherical nano-particles are made of calcium compounds and sand [12]. The pores of the spheres are lined with chemicals, which extract algal oil without breaking the cell membrane. Nevertheless, prior to commercial market penetration of nano­harvesting, there would be a need to carry out due diligence to ensure the safety of these processes.