NORMALIZED EFFICIENCY CURVE

With equation (9) and (10) we can calculate the normalized efficiency curve.

EN 12975 [ 1 ] defines the following conditions for that curve:

• beam radiation: 680 W/m2 (85% of the global radiation)

• diffuse radiation: 120 W/m2 (15% of the global radiation)

• global radiation: 800 W/m2

• Incidence angle: 15°

Vnorm =Ъ. !AMdir_15 + G. MGdJ ; IAMdir_e = 1 — b0 • ^—S — — ij (9)

LS

WLS

min

coeff.

max

U

min

coeff.

max

U

І0

0,710

0,716

0,722

0,006

0,707

0,713

0,718

0,005

b0

0,119

0,144

0,170

0,026

0,106

0,128

0,149

0,022

IAMdfu

0,827

0,868

0,908

0,041

0,856

0,894

0,933

0,038

k1

-6,445

-5,890

-5,335

0,555

-6,532

-6,109

-5,686

0,423

k2

-0,049

-0,038

-0,027

0,011

-0,043

-0,035

-0,027

0,008

Ceff

-3821,2

-636,0

2549,1

3185,1

-3039,4

-612,1

1815,2

2427,3

Table 1: Collector coefficients with uncertainties in the 95% confidence interval

The uncertainty of each point of the normalized efficiency curve is calculated with equation (11). This equation is comparable to equation (7). With the collector coefficients determined by the quasi-dynamic test, it is also possible to calculate the equivalent normalized efficiency curve of a steady state test.