Hydrostatic and Deviatoric Stresses

Total stress tensor can be divided into two components: hydrostatic or mean stress tensor (om) involving only pure tension or compression and deviatoric stress tensor

image643 Подпись: (A. 8a) (A.8b)

(o’j) representing pure shear with no normal components:

It is to be noted that pure hydrostatic stress does not lead to plastic deformation and finite deviatoric stresses are needed for any plastic deformation to take place.

A.4

Normal and Shear Stresses on a Given Plane (Cut-Surface Method)

Given Oj in reference system 12 3, n is the unit vector normal to the plane = njn2n3, m is the unit vector in the plane = m1m2m3, oN is the normal stress along n, and t is the shear stress along m (see Figure A.2).

Note: П ■ m — 0, n2 + n2 + n| = 1, and m1 + m2 + m2 = 1. If П — 1, 2, 5 ) П — 1/^30, 2Д/30, 5Д/30 , n is a unit vector, where /12 + 22 + 52 = /30 so that n1 + n2 + n2 = 1.

First, we find the stress vector (S) {the stress vector is the vector force per unit area acting on the cut}:

S1

011

012

013

S2

— 021

022

023

S3

031

032

033

n1 3^

n2 ) Si = Oikm;

n3 k=1

that is, S1 = o11n1 + o12n2 + o13n3, and so on. oN and t are given as follows: oN = S ■ n = S1n1 + S2n2 + S3n3 and

Подпись:

image646

t — S ■ m = S1m1 + S2m2 + S3m3,

Figure A.2 Designations for normal and shear stress calculations.

image647

and tmax occurs when n, S, and m are in the same plane:

Thus, given the stress tensor, we need only two elastic constants E and n, since G is related to E and n:

G = E/2(1 + n). (A. 14)

We now note that the volume change or dilatation is given by

Д =(1- + e1)(1 + e2)(1 + e3) — 1 — e1 + e2 + e3

since e’s << 1. Note that Д is the first invariant of the strain tensor and mean strain em = Д/3.

image648

Thus, bulk modulus

(A.17)

Note that the derivative of U0 with respect to any strain component equals the cor­responding stress component:

Подпись: dU0 dsx — 1Д T 2Gex — Sx

image650 Подпись: '-x •

and similarly

A.7

Generalized Hooke’s Law

Подпись: (A. 18)Подпись: (A. 19)eij Sijklakl:

Here Sjki is the elastic compliance tensor (fourth rank) and

aij Cijklekh

where Cijkl is elastic stiffness (or elastic constants).

Crystal symmetry reduces the number of independent terms: cubic — 3, hexago­nal — 5, and so on, and these are related to E and G.

Details on these compliance and stiffness coefficients are beyond the scope of this book and may be found elsewhere.

image652

Appendix B

B.1

SI Units

Quantity

Unit

Symbol

Length

Meter

m

Mass

Kilogram

kg

Time

Second

s

Electric current

Ampere

A

Temperature

Kelvin

K

Amount of substance

Mole

mol

Luminous intensity

Candela

cd

Plane angle

Radian

rad

Solid angle

Steradian

sr

B.2

Some Derived Units

Quantity

Special

name

Symbol

Equivalence in

Other Base derived units units

Force, load, weight

Newton

N

kgm s-2

Stress, strength, pressure

Pascal

Pa

N m-2

kgm-1 s-2

Frequency

Hertz

Hz

s-1

Energy, work, heat

Joule

J

Nm

kg m2 s-2

Power

Watt

W

Js-1

kg m2 s-3

Electric charge

Coulomb

C

A s

Electric potential/voltage

Volt

V

WA-1

kg m2 s-3 A-1 (continued)

An Introduction to Nuclear Materials: Fundamentals and Applications, First Edition.

K. Linga Murty and Indrajit Charit

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.

Quantity

Special

name

Symbol

Equivalence in

Other Base derived units units

Resistance

Ohm

V

VA-1

kgm2s-3 A-2

Capacitance

Farad

F

C V-1

kg-1 m-2 s4A2

Magnetic flux

Weber

Wb

Vs

kgm2 s-2 A-1

Magnetic flux density

Tesla

T

Wb m

-2

kgs-2 A-1

Inductance

Henry

H

Wb A-

1

kg m2 s-2 A-2

B.3

Standard Unit Prefixes and Their Multiples and Submultiples

Name

Multiplication factor

Symbol

Atto

10-18

a

Femto

10-15

f

Pico

10-12

p

Nano

10-9

n

Micro

10-6

m

Milli

10-3

m

Kilo

103

k

Mega

106

M

Giga

109

G

Tera

1012

T

B.4

Some Unit Conversion Factors

B.4.1

Length

1 inch = 25.4 mm 1 nm= 10-9m 1 mm = 10-6 m 1A= 10-10m = 0.1 nm

B.4.2

Temperature

T (K) = T (°C) + 273.15 T (°C) = [T (°F) — 32]/1.8

B.4.3

Mass

1 Mg= 103kg 1kg = 10~3 Mg

1kg = 103g 1kg = 2.205 lbm

1g = 10~3kg

B.4.4

Force

1kgf = 9.81 N 1lb = 4.448 N 1 dyne = 10~5 N

B.4.5

Stress

1 ksi (i. e., 103 psi) = 6.89 MPa 1 MPa= 1N mm-2 = 145 psi 1Pa = 10 dyn cm-2 1 ton in.-2 = 15.46 MPa 1 atm = 0.101325 MPa 1bar = 0.1 MPa 1 Torr (mmHg) = 133.3 MPa

B.4.6

Energy, Work, and Heat

1 eV atom 1 = 96.49 kJ mol 1 1 cal = 4.184 J 1 Btu = 252.0 cal 1 erg = 10-7 J

B.4.7

Miscellaneous

1° = rad

57.3

Подпись:1 g cm-3 = 1000 kg m~3 1 poise = 0.1 Pas 1 ksi in.1/2 = 1.10 MN m~3/2

B.5

Selected Physical Properties ofMetals (Including Metalloids)

Symbol

Atomic

number

Atomic

weight

Density at 20 °C (gcm-3)

Melting point (°C)

Al

13

26.98

2.7

660

Sb

51

121.76

6.68

630.5

As

33

74.91

5.727

814

Ba

56

137.36

3.5

710

Be

4

9.013

1.845

1284

Bi

83

209.0

9.8

271.2

B

5

10.82

2.34

2300

Cd

48

112.41

8.65

320.9

Ca

20

40.08

1.54

851

Ce

58

140.13

6.66

795

Cs

55

132.91

1.873

28.5

Cr

24

52.01

7.19

1875

Co

27

58.94

8.90

1493

Nb

41

92.91

9.57

2468

Cu

29

63.54

8.94

1083

Dy

66

162.51

8.536

1407

Er

68

167.21

9.051

1497

Eu

63

152.0

5.259

826

Gd

64

157.26

7.895

1312

Ga

31

69.72

5.907

29.75

Ge

32

72.60

5.32

936

Au

79

197.2

19.32

1063

Hf

72

178.50

13.29

2150

Ho

67

164.94

8.803

1461

In

49

114.82

7.31

156.6

Ir

77

192.2

22.42

2410

Fe

26

55.85

7.87

1535

La

57

138.92

6.174

920

Pb

82

207.21

11.34

327.4

Li

3

6.940

0.534

179

Lu

71

174.99

9.842

1652

Mg

12

24.32

1.74

651

Mn

25

54.94

7.44

1244

Hg

80

200.61

13.55

-38.87

Mo

42

95.95

10.22

2610

Nd

60

144.27

7.004

1024

Ni

28

58.69

8.9

1452

Os

76

190.2

22.5

3000

Pd

46

106.4

12.02

1552

(continued)

Symbol

Atomic

number

Atomic

weight

Density at 20 °C (gcm~3)

Melting point (°C)

Pt

78

195.09

21.40

1769

Pu

94

239.11

19.84

639.5

K

19

39.10

0.87

63.7

Pr

59

140.92

6.782

935

Pm

61

145

7.264

1035

Re

75

186.22

21.02

3180

Rh

45

102.91

12.44

1960

Ru

44

101.1

12.4

2250

Sm

62

150.35

7.536

1072

Sc

21

44.96

2.99

1539

Se

34

78.96

4.79

217

Si

14

28.09

2.33

1410

Ag

47

107.873

10.49

960.5

Na

11

22.991

0.97

97.9

Sr

38

87.63

2.6

770

Ta

73

180.95

16.6

2996

Te

52

127.61

6.25

449.5

Tb

65

158.93

8.272

1356

Tl

81

204.39

11.85

303

Th

90

232.05

11.66

1750

Tm

69

168.94

9.332

1545

Sn

50

118.7

7.3

232

Ti

22

47.90

4.54

1668

W

74

183.92

19.3

3410

U

92

238.07

19.07

1132

Yb

70

173.04

6.977

824

Y

39

88.92

4.472

1509

Zn

30

65.38

7.133

419.5

Zr

40

91.22

6.45

1852

Adapted from Ref. [1].

B.6

Thermal Neutron (0.025 eV) Absorption Cross Sections of Some Elements

Element

Absorption

cross

section (b)

Element

Absorption

cross

section (b)

Element

Absorption

cross

section (b)

C

0.0035

Ni

4.49

Ho

64.7

Be

0.0076

Sb

4.91

Lu

74

Bi

0.034

V

5.08

Am

75.3

Mg

0.063

Ti

6.09

Re

89.7

Si

0.171

Pd

6.90

Au

98.7

Pb

0.171

Th232

7.56

Tm

100

Zr

0.185

U

7.57

Hf

104.1

Al

0.231

La

8.97

Rh

144.6

H

0.332

Pt

10.3

Np

175.9

Sn

0.626

Pr

11.5

Er

159

Ce

0.630

Se

11.7

In

193.8

Zn

0.110

Mn

13.3

Pu240

289.6

Nb

1.15

Os

16.0

Ir

425

Y

1.28

W

18.3

B

767

Ge

2.20

Ta

20.6

Dy

994

Fe

2.56

Tb

23.4

Pu239

1017.3

Ru

2.56

Sc

27.5

Pu241

1400 (*)

Mo

2.48

Co

37.2

Cd

2520

Cr

3.05

Yb

34.8

Eu

4530

Tl

3.43

Nd

50.5

Sm

5922

Cu

3.78

Ag

63.3

Gd

49 700

Te

4.7

[Source: Special feature section of neutron scattering lengths and cross sections of the elements and isotopes, Neutron News, 3 (1992) 29-37]

B.7

Mechanical Properties of Some Important Metals and Alloys

Alloy

Young’s

modulus

(GPa)

Poisson’s

ratio

UTS

(MPa)

YS

(MPa)

Elongation

to

fracture (%)

Fracture toughness (MPa m1/2)

Al 2024 T851

72.4

0.33

455

400

5

26.4

Al 7075 T651

72

0.33

570

505

11

24.2

Al 7178T651

73

0.33

605

540

10

23.1

Ti-6Al-4V

113.8

0.342

1860

148

14

55

(grade 5)

Alpha annealed

100

0.3

620

500

15

100

Ti-3Al-2.5V

702 Zirconium

99.3

0.35

379

207

16

Stainless steel

205

745

470

22

60.4

4340

Stainless steel

193

0.29

505

215

70

304

Tool steel H11

210

1990

1650

9

(hot worked)

Maraging steel

200

1864

1737

17.4

Superalloy

860

310

10

CoCrWNi

Superalloy H-X

690

276

40

nickel

B.8

Mechanical Properties of Some Important Ceramics

Ceramic

Young’s

modulus

(GPa)

Poisson’s

ratio

Hardness

(HV)

Tensile

strength

(MPa)

Compressive

strength

(MPa)

Flexural

strength

(MPa)

Fracture toughness (MPa m1/2)

Silicon

nitride

320

0.28

1800

350-415

2100-3500

930

6

Silicon

carbide

450

0.17

2300

390-450

1035-1725

634

4.3

Tungsten

carbide

627

0.21

1600

344

1400-2100

1930

MgO-stabilized

ZrO2

200

0.3

1200

352

1750

620

11

Boron

carbide

450

0.27

2700

470

450

3.0

Titanium

diboride

556

0.11

2700

470

277

6.9

Note: The above values are indicative only. Adapted from Ref. [2].

Подпись: 1 Hampel, C.A. (1961) Rare Metals Handbook, Chapman & Hall, London. Подпись: 2 Meyers, M.A. and Chawla, K.K. (2009) Mechanical Behavior of Materials, Cambridge University Press.

References

[1] For example, B10 + n1 ! Li7 + He4.

[2] Using these data, evaluate the parameters n and Q in the power-law creep equation.

ii) Identify the underlying creep mechanism.

iii) If in another example, a thin polycrystalline sample exhibited essentially the same n and Q, what would be the controlling creep mechanism?

[3] Relaxation (or excess) volume is generally asso­ciated with a defect leading to some form of internal stress and is expressed in terms of atomic volume (V). Relaxation volume basi­cally measures the distortion volume induced in the lattice due to the insertion of a vacancy or interstitial. Most calculations of relaxation