Как выбрать гостиницу для кошек
14 декабря, 2021
Fig. 2. Illustration of the length and time scales (and inherent feedback) involved in the multiscale processes responsible for microstructural changes in irradiated materials |
A hierarchy of models is employed in the theory and simulation of complex systems in materials science and condensed matter physics: macroscale continuum mechanics, macroscale models of defect evolution, molecular scale models based on classical mechanics, and various techniques for representing quantum-mechanical effects. These models are classified according to the spatial and temporal scales that they resolve (Figure 2). In this figure, individual modeling techniques are identified within a series of linked process circles showing the overlap of relevant length and timescales. The modeling methodology includes ab initio electronic structure calculations, molecular dynamics (MD), accelerated molecular dynamics, kinetic Monte Carlo (KMC), phase field equations or rate theory simulations with thermodynamics and kinetics by passing information about the controlling physical mechanisms between modeling techniques over the relevant length and time scales. The key objective of such an approach is to track the fate of solutes, impurities and defects during irradiation and thereby, to predict microstructural evolution. Detailed microstructural information serves as a basis for modeling the physical behavior through meso (represented by KMC, dislocation dynamics, and phase field methods) and continuum scale models, which must be incorporated into constitutive models at the continuum finite element modeling scale to predict performance limits on both the test coupons and components.