Thermal methods for power monitoring of nuclear reactor

Power monitoring using thermal power produced by reactor core is a method that is used in many reactors. To explain how the method is used for reactor power measurement, a research reactor is studied in this section. In IPR-R1, a TRIGA Mark I Research Reactor, the power is measured by four nuclear channels. The departure channel consists of a fission counter with a pulse amplifier that a logarithmic count rate circuit. The logarithmic channel consists of a compensated ion chamber, whose signal is the input to a logarithmic amplifier, which gives a logarithmic power indication from less than 0.1 W to full power. The linear channel consists of a compensated ion chamber, whose signal is the input to a sensitive amplifier and recorder with a range switch, which gives accurate power information from source level to full power on a linear recorder. The percent channel consists of an uncompensated ion chamber, whose signal is the input to a power level monitor circuit and meter, which is calibrated in percentage of full power. The ionization chamber neutron detector measures the flux of neutrons thermalized in the vicinity of the detector. In the present research, three new processes for reactor power measurement by thermal ways were developed as a result of the experiments. One method uses the temperature difference between an instrumented fuel element and the pool water below the reactor core. The other two methods consist in the steady-state energy balance of the primary and secondary reactor cooling loops. A stainless steel-clad fuel element is instrumented with three thermocouples along its centerline in order to evaluate the reactor thermal hydraulic performance. These processes make it possible on-line or off-line evaluation of the reactor power and the analysis of its behavior.