Application of Cherenkov radiation and a designed detector for power monitoring

Cherenkov radiation is a process that could be used as an excess channel for power measurement to enhance redundancy and diversity of a reactor. This is especially easy to establish in a pool type research reactor (the TRR). A simple photo diode array is used in Tehran Research Reactor to measure and display power in parallel with the existing conventional detectors (Arkani and Gharib, 2009). Experimental measurements on this channel showed that a good linearity exists above 100 kW range. The system has been in use for more than a year and has shown reliability and precision. Nevertheless, the system is subject to further modifications, in particular for application to lower power ranges. TRR is originally equipped with four channels, namely, a fission chamber (FC), a compensated ionization chamber (CIC), and two uncompensated ionization chambers (UIC). However, in order to improve the power measuring system, two more channels have also been considered for implementation in recent years. One of these channels is based on 16O (n, p) 16N reaction which is very attractive due to the short half life of 16N (about 7 s). The other channel, at the center of our attention in this work, is based on measurement of Cherenkov radiation produced within and around the core. This channel has a fast response to power change and has been in operation since early 2007. It has been established that the movement of a fast charged particle in a transparent medium results in a characteristic radiation known as Cherenkov radiation. The bulk of radiation seen in and around a nuclear reactor core is mainly due to Beta and Gamma particles either from fission products or directly emanating from the fission process (prompt fission gamma rays). As it will be explained more thoroughly in the following section, Cherenkov radiation is produced through a number of ways when: (a) beta particles emitted by fission products travel with speeds greater than the speed of light in water and (b) indirect ionization by Gamma radiation produces electrons due to photo electric effect, Compton effect and pair production effect. Among these electrons, Compton electrons are the main contributors to Cherenkov radiation. It is established that Cherenkov light is produced by charged particles which pass through a transparent medium faster than the phase velocity of light in that medium. Considering the fact that speed of light in water is 220,000 km/s, the corresponding electron energy that is required to produce Cherenkov light is 0.26 MeV. This is the threshold energy for electrons that are energetic enough to produce Cherenkov light. It is the principal basis of Cherenkov light production in pool type research reactors in which the light is readily visible. For prompt Gamma rays, in general, it makes it possible to assume that Cherenkov light intensity is a linear function of reactor power. It is clear that neutron intensity, fission rate, power density, and total power itself are all inter-related by a linear relationship. In other words, Cherenkov light intensity is also directly proportional to the fission rate. This leads us to the fact that the measured Cherenkov light intensity at any point in a reactor is linearly proportional to the instantaneous power. As long as the measurement point is fixed, the total power could easily be derived from the light intensity with proper calibration. It should be noted here that, as mentioned before, Cherenkov light is also emitted by the electrons produced by the indirect ionization of fission products by Gamma rays, which are confined in fuel elements. For this reason, a linear relationship between reactor power and Cherenkov light intensity would only hold at the higher power range where fission power is dominant in comparison with residual power. Cherenkov light emanating from core is collected by a collimator right above the core and reflected by a mirror onto a sensitive part of the PDA. Figure 11 shows the integrated system at work, overlooking the core.

image504

Fig. 11. Power measuring channel at work in TRR while receiving Cherenkov light (Arkani and Gharib, 2009).

An important factor to be checked is the system fidelity. This means that the response of the system must be the same when the reactor power is raised or lowered. There is a good fidelity within the linearity range by comparison of the Cherenkov system with the output of CIC power monitoring channel. Moreover, there has been no drift observed in the system in the long run as the system functioned properly for almost 2 years since it was installed. Finally, it is necessary to examine whether the reading from the Cherenkov detector is consistent with other channels. Finally, it is necessary to examine whether the reading from the Cherenkov detector is consistent with other channels. Figure 12 shows its good consistency with other conventional channels (only the fission chamber is shown for the sake of simplicity) within a typical shift operation.

image505

Fig. 12. Comparison of Cherenkov detector output with other regular channels within a typical operation shift of TRR (Arkani and Gharib, 2009).

It is observed that the steadiness and stability of the Cherenkov detector is as good as other existing channels. The 16N counts and pool average temperature are also included as further confirmation of the general behavior of the reactor during the operation. Reasonable stability is observed in the hourly readings of all the channels. Based on statistics, the output value of the present PDA system is valid within ±1 % at its nominal power. It is concluded that, at least for the case of research reactors, one can simply increase redundancy and diversity of medium-range reactors by employing the Cherenkov detector as an auxiliary tool for monitoring purposes. It is seen that such a system can provide a stable and reliable tool for the major part of power range, and it can assist in the reactor operation with additional safety interlocks to issue appropriate signals. The advantage of the present detector system over conventional ones is that it is far from the radiation source and thus easily accessible for maintenance and fine tuning. It contains no consumable materials to degrade in long term, and it is relatively inexpensive and simple. Nevertheless, a drawback of the Cherenkov system, which is also true about uncompensated ionization chambers, is its lack of linearity in the low power range.