Power monitoring in nuclear reactors

In order to ensure predictable temperatures and uniform depletion of the fuel installed in a reactor, numerous measures are taken to provide an even distribution of flux throughout the power producing section of the reactor. This shaping, or flattening, of the neutron flux is normally achieved through the use of reflectors that affect the flux profile across the core, or by the installation of poisons to suppress the neutron flux where desired. The last method, although effective at shaping the flux, is the least desirable since it reduces the neutron economy by absorbing the neutrons (DOE, 1993).

In recent years, power monitoring systems are under developing in research centers. Sakai et al. (Sakai et al., 2010) invented a power monitoring system for boiling water reactors (BWRs). In the BWR, the output power alternately falls and rises due to the generation and disappearance of voids, respectively, which may possibly generate power oscillation whereby the output power of the nuclear reactor oscillates and is amplified. The power monitoring system has a local power range monitor (LPRM) unit that has a plurality of local power channels to obtain local neutron distribution in a nuclear reactor core; an averaged power range monitor (APRM) unit that receives power output signals from the LPRM unit and obtains averaged output power signal of the reactor core as a whole; and an oscillation power range monitor (OPRM) unit that receives the power output signals from the LPRM unit and monitors power oscillation of the reactor core. The output signals from the LPRM unit to the APRM unit and the output signals from the LPRM unit to the OPRM unit are independent. A new flux mapping system (FMS) in Korea Electric Power Research Institute (KEPRI) was installed in Kori’s unit 1 nuclear power plant. An in-core neutron FMS in a pressurized water reactor (PWR) yields information on the neutron flux distribution in the reactor core at selected core locations by means of movable detectors. The FMS having movable neutron detectors is equipped with detector cable drive units and path selectors located inside the reactor containment vessel. The drive units push and pull their detector cables, which run through guide tubes, and the path selectors route the detector cables into the predetermined guide tubes. Typically, 36-58 guide tubes (thimbles) are allocated in the reactor depending on the number of fuel assemblies. A control system of FMS is located at the main control room to control the detector drive system and measure the flux signal sensed by the detectors. The flux mapping data are used to verify the reactor core design parameters, and to determine the fission power distribution in the core. The new designed path selector for a guide the neutron detectors through the reactor core are shown in Figure 1.

image494

Fig. 1. The new designed path selector for KEPRI unit 1 reactor (Cho et al., 2006)

The path selector system is composed of four inner path selectors and an outer path selector. With the benefit of the double indexing path selector mechanism, the reliability of the detector drive system has been improved five times higher than that of a conventional system. Currently, the developed in-core flux mapping systems have been deployed at the Kori nuclear units 1-4.