Fuel centerline temperature calculations

In order to calculate the fuel centerline temperature, steady-state one-dimensional heat- transfer analysis was conducted. The MATLAB and NIST REFPROP software were used for programming and retrieving thermophysical properties of a light-water coolant, respectively. First, the heated length of the fuel channel was divided into small segments of one-millimeter lengths. Second, the temperature profile of the coolant was calculated. Third, sheath-outer and inner surface temperatures were calculated. Fourth, the heat transfer through the gap between the sheath and the fuel was determined and used to calculate the outer surface temperature of the fuel. Finally, the temperature of the fuel in the radial and axial directions was calculated. It should be noted that the radius of the fuel pellet was divided into 20 segments. The results will be presented for fuel-sheath gap widths of zero, 20 ^m and 36 ^m. Moreover, the fuel centerline temperature profiles have been calculated based on a no-gap condition in order to determine the effect of gap conductance on the fuel centerline temperature. Figure 12 illustrates the methodology based on which fuel centerline temperature was calculated. The following section provides more information about each step shown in Fig. 12.

As shown in Fig. 12, the convective heat transfer between the sheath and the coolant is the only heat transfer mode which has been taken directly into consideration. In radiative heat transfer, energy is transferred in the form of electromagnetic waves. Unlike convection and conduction heat transfer modes in which the rate of heat transfer is linearly proportional to temperature differences, a radiative heat transfer depends on the difference between absolute temperatures to the fourth power. The sheath temperature is high[12] at SCWR conditions; therefore, it is necessary to take into account the radiative heat transfer.

In the case of the sheath and the coolant, the radiative heat transfer has been taken into consideration in the Nusselt number correlation, which has been used to calculate the HTC. In general, the Nusselt number correlations are empirical equations, which are developed based on experiments conducted in water using either bare tubes or tubes containing electrically heated elements simulating the fuel bundles. To develop a correlation, surface temperatures of the bare tube and/or simulating rods are measured along the heated length of the test section by the use of thermocouples or Resistance Temperature Detectors (RTDs). These measured surface temperatures already include the effect of the radiative heat transfer; therefore, the developed Nusselt number correlations represent both radiative and convection heat transfer modes. Consequently, the radiative heat transfer has been taken indirectly into consideration in the calculations.

image309

Fig. 12. Fuel centerline temperature calculations.