Safety margins evaluation

The safety margin for OFI phenomenon is defined as the ratio between the power to attain the OFI phenomenon within the core channel, and the hot channel power, this means that, OFI margin is equal to the ratio of the minimum average heat flux leads to OFI in the core channels and the average heat flux in the hot channel. It is found that, the OFI phenomenon occurs at an average heat flux of 2.1048 MW/ m2 for steady-state operation (т = 0.0 s), and 1.7294 MW/m2 just before Scram (т = 4.0s). Thus, these values can be regarded as the maximum possible heat fluxes to avoid OFI under steady-state operation and just before Scram respectively. The maximum hot channel heat flux is determined using the data of table 3 as 0.72595 MW/ m2 with an average value of 0.5648 MW/ m2. This means that, the reactor has vast safety margins for OFI phenomenon of 3.73 for steady-state operation, 3.45 and 3.06 just before Scram for both fast and low loss-of-flow transient respectively. Table 4 gives the estimated heat flux leading to OFI and the safety margin values for both the steady and transient states.

Description

Steady-state т = 0.0 s

Transient т = 0.16 s

Transient т = 4.0 s

OFI heat flux (MW/m2)

2.1048

1.9491

1.7294

Safety margin for OFI

3.73

3.45

3.06

Table 4. Reactor safety margins for OFI phenomenon.

3. Conclusion

Flow instability is an important consideration in the design of nuclear reactors due to the possibility of flow excursion during postulated accident. In MTR, the safety criteria will be determined for the maximum allowable power and the subsequent analysis will therefore restrict to the calculations of the flow instability margin. In the present work, a new empirical correlation to predict the subcooling at the onset of flow instability in vertical narrow rectangular channels simulating coolant channels of MTR was developed. The developed correlation involves almost all parameters affecting the phenomenon in a dimensionless form and the coefficients involved in the correlation are identified by the experimental data of Whittle and Forgan that covers the wide range of MTR operating conditions. The correlation predictions for subcooling at OSV were compared with predictions of some previous correlations where the present correlation gives much better agreement with the experimental data of Whittle and Forgan with relative standard
deviation of only 6.6%. The bubble detachment parameter was also estimated based on the present correlation. The present correlation was then utilized in a model predicting the void fraction and pressure drop in subcooled boiling under low pressure. The pressure drop model predicted the S-curves representing the two-phase instability of Whittle and Forgan with good accuracy. The present correlation was also incorporated in the safety analysis of the IAEA 10 MW MTR generic reactor in order to predict the OFI phenomenon under both fast and slow loss-of-flow transient. The OFI locus for the reactor coolant channels was predicted and plotted against flow velocity, exit temperature and bubble detachment parameter for various heat flux values. It was found that the reactor has vast safety margins for OFI phenomenon under both steady and transient states.