WE DISCOVER FIRE

"In Ozma’s boudoir hangs a picture in a radium frame. This picture appears to be of a pleasant countryside, but when anyone wishes for the picture to show a particular person or place, the scene will display what is wished for.”

—from a description of a plot device in L. Frank Baum’s Land of Oz, thought to be placed somewhere on the

Ozark Plateau.

It was hunting season in the Ozark Mountains in November 1879. Sport hunters Bill Henry, John Dempsey, and Bill Boyceyer of Barry County, Missouri, were out to shoot a wildcat. They had left their hunting party behind, chasing a cat through the dense woods with their enthusiastic hunting dog. The dog, with his seemingly boundless dog-energy, ran full tilt down a gulley, then straight up the side of a steep hill, chasing the cat through previously untrampled territory. The cat looked desperate. Leaping around on the side of the mountain, he disappeared into a black hole, and the hound did not hesitate to dive in after him.

The three men, somewhat winded from the pursuit, knew they had him now. They cocked their pieces, aimed high at the orifice, and waited for the cat to come blasting out. The wait became uncomfortable. Fifteen minutes, and not only was there no cat, but the dog hadn’t come back. They half-cocked their firearms and started to climb, but just then they heard the dog barking, somewhere on top of the hill. They whistled him down. He had obviously gone clean through the mountain and come out the other side.

Henry, Dempsey, and Boyceyer immediately found this hole in the side of the mountain more interesting than the wildcat. They had been around here before, but had never noticed the hole. It was oddly placed, and it would be easy to miss. It required investigation.

Cautiously, the three entered the opening. Shortly inside they saw along the wall what appeared to be a vein of pure, silvery metal, and dollar signs came up in their eyes. Could it be? Could they have stumbled into an undisturbed silver mine? It was growing dark, and they decided to retire to the hunting camp and do some planning. Nobody was to say anything to anybody about the hole, and they would return tomorrow for a more thorough exploration. The next morning they returned to the site, dogless this time but with a boy to help carry things. They lit pitch-pine torches and crawled into the opening, single file, with Henry leading. The cavern opened up, and everything in it looked strange and unfamiliar. At about two hundred feet in, the tunnel was partially blocked by what looked like a large tree trunk of solid silver. It was the strangest metal they had ever seen, with the bluish sheen of a peacock’s tail. In the yellow glare of the torches it seemed faceted, like a cut diamond. In the tight, unfamiliar surroundings, imaginations ran wild. Henry selected a free rock on the floor and used it to bang on the mineral column. A few unusually heavy pieces chipped off, and they put them in a small tin box for transport.

Still feeling the tingle of adventure, they squeezed one at a time past the silvery obstruction and pressed on. At an estimated five hundred feet from the entrance they entered an arched room, and their perceptions started to veer into hallucinogenic territory. The walls of the room shone like polished silver, the floor was a light blue, and the ceiling was supported by three transparent crystal columns. Hearts raced as the oxygen level dropped. The men each knew that they had found their eternal fortune, and in their minds, gently slipping away, they were already spending it. They pressed past the columns, and the torches started to sputter and die. The walls were starting to get very close, and a blind panic gripped all three hunters simultaneously. They scrambled, crawled, and grabbed their ways to the cave portal as quickly as possible, with Henry dragging the box of samples.

Boyceyer was first out into the fresh air and sunlight. He took a deep breath, and his legs stopped working. He keeled over in a heap at the entrance, and shortly thereafter Henry tripped over him and passed out cold. Dempsey emerged in a strangely talkative mood, babbling and making no sense at all. The boy, left sitting out under a tree, had quickly seen and heard enough. He leaped to his feet and ran in the opposite direction, down the mountain in free fall, bursting into the campsite winded and trying to explain what had happened up there, pointing. Eventually calming him down and extracting a coherent message, the men quickly assembled a rescue team and hurried to the site.

It is now clear that the hunters were suffering the classic symptoms of oxygen deprivation. When the rescuers arrived, Boyceyer and Dempsey were coming around, but Henry was enfeebled, dazed, and unable to hike out. The men decided to cut the hunting expedition short and take him home. On the way his condition deteriorated. Fearing the specter of a new form of plague, they took him to a hospital in Carthage, Missouri. The doctors had no idea what was ailing him. His symptoms were puzzling. Sores resembling burns broke out all over his body, and his legs seemed paralyzed. Bill Henry remained hospitalized for several weeks, and he had time to plan for extracting his fortune from the hole in the mountain.

When he had recovered enough to leave under his own power, he staggered back to the cave to stake out a claim and work his silver mine, but the person who actually owned the land on which the mountain stood did not share his optimism, and no mining agreement could be reached between the two men. The guy wouldn’t even come out and see the cave with its sparkling silver, just sitting there ready to be hauled away. Perhaps he knew more than he would admit about that mountain. He wanted no part of a mining venture, and he advised Bill Henry to find something else to do.

Exasperated and angry beyond words, Henry returned to the site and avalanched as much material as he could move into the portal, making a hole that had been hard to find impossible to see. He would come back later, once he had figured out some further strategy.

There is no record of Henry having returned again, and he disappeared into the murk of history. The cave location faded away, and the story became one of the colorful, spooky legends to be told around campfires after dark up in the Ozarks. That’s the story, but it was not written down until 34 years after the incident, and facts could have drifted. There are questions. The initial problem was obviously oxygen deprivation, but what had taken the place of normal air in this cave? It could have been methane, the scourge of coal mining, but the cave was not lined with coal and there was not a hint of tool marks anywhere. And what had caused the burn-like lesions all over Bill Henry? Was he alone allergic to some mineral on the walls? What was the bright, iridescent stuff lining the cave? That is not what silver, or even gold, looks like in its native state. Later explorations of the cave would provide unexpected answers to these questions.

Meanwhile, in the formal physics lecture theaters and laboratories in Europe in 1879, the danger of being in a certain cave in Missouri and what it had to do with anything were unknown. Scientists across the Continent and in the United Kingdom, working at well-established universities, were busy studying the interesting properties of electricity in evacuated glass tubing. A thrillingly dangerous piece of equipment called a Ruhmkorff coil produced high-voltage electricity for these experiments. They were essentially inventing and refining what would become the neon sign. Research was progressing at an appropriate pace, gradually unraveling the mysteries of atomic structure.

Working independent of any academic pretension in the United States was a highly intelligent, well-educated immigrant from Croatia, Nikola Tesla. He came ashore in June 1884 with a letter of introduction to Thomas Edison, famous American inventor of the record player and the light bulb. He was given an engineering job at $18 a week improving Edison’s awkward and ultimately unusable DC electrical power system, but he quit a year later under intractable disagreements concerning engineering practice, salary, general company philosophy, and his boss’s personal hygiene. He immediately started his own power company, lost control of it, and wound up as a day laborer for the Edison Company laying electrical conduit. Not seeing a need for sleep, he spent nights working on high-voltage apparatus and an alternating-current induction motor.

In Europe they were working with induction coils that could produce a ripping 30,000 volts, stinging the eyes with ozone wafting out of the spark gap and with a little buzzer on the end making the spark semi-continuous. In New York, Tesla was lighting up the lab with 4,000,000 volts and artificial lightning bolts vibrating at radio frequencies. Naturally drawn to the same rut of innovation as his Old World colleagues, he connected an evacuated glass tube to his high — voltage source in April 1887. It had only one electrode. He connected it to his lightning machine and turned it on, just to see what would happen. Electrons on the highly over-driven electrode slammed themselves against the glass face of the tube, trying desperately to get out and find ground somewhere. The glass could not help but fluoresce under the stress, making a weak but interesting light. Tesla had invented something important, but he would not know exactly what it was until years later. He applied for a patent for his single-electrode tube, calling it an “incandescent light bulb” as a finger-poke in Edison’s eye.

In 1891 Tesla’s fortunes improved considerably when George Westinghouse, Edison’s competitor for the electrical power market, became interested in his alternating current concepts. He moved into a new laboratory on Fifth Avenue South, and he had room to spread out and really put his high-voltage equipment to use. One night, he connected up his single­electrode tube built back in 1887. He turned off all the lights so he could see arcs and electron leakage. To his surprise, something invisible was coming out the end of his tube and causing the fresh white paint on the laboratory wall to glow. Curious, he put his hand in the way. His hand did stop the emanations, but only partly. The bones in his hand were dense enough to stop it from hitting the wall, but not the softer parts, and he could see his skeletal structure projected on the paint. Tesla, fooling around in his lab after hours, had invented radiology. In the next days he substituted photographic plates for the wall, and made skeletal photos of a bird, a rabbit, his knee, and a shoe with his foot in it, clearly showing the nails in the sole.

Unfortunately, Tesla was pulled toward greater projects, and he failed to pursue the obvious application of this discovery.

Four years later, on December 28, 1895, the discovery of the unusual radiation was formally announced, not by Tesla, but by Wilhelm Rontgen, working at the University of Munich. Rontgen was also studying fluorescence, using his trusty Rhumkorff apparatus and a two-electrode tube

custom-built by his friend and colleague, Phillipp von Lenard.6 Like Tesla, he was startled to notice that some sort of invisible emanations from the tube pass through flesh, but are stopped by bones or dense material objects. In his paper in the Proceedings of the Physical Medical Society, Rontgen gave the phenomenon a temporary name: x-rays. Amused at reading the paper, Tesla sent Rontgen copies of his old photo plates. “Interesting,” replied Rontgen. “How did you make these?” Not trusting his own setup to be kind, Rontgen covered his apparatus with sheets of lead, with a clear hole in the front to direct the energy only forward.

Tesla, on the other hand, put his head in the beam from his invention and turned it up to full power, just to see what it would do. Rontgen had jumped him on the obvious medical usage, but there had to be some other application that could be exploited for profit. After a short while directly under the tube, he felt a strange sensation of warmth in the top of his head, shooting pains, and a shock-effect in his eyes. Seeing the value of publication shown by Rontgen’s disclosure, he wrote three articles for the Electrical Review in 1896 describing what it felt like to stick your head in an x-ray beam.

The effects were odd. “For instance,” he first wrote, “I find there is a tendency to sleep and I find that time seems to pass quickly.” He speculated that he had discovered an electrical sleep aid, much safer than narcotics. In his next article for 1896, after having spent a lot of time being x-rayed, he observed “painful irritation of the skin, inflammation, and the appearance of blisters… , and in some spots there were open wounds.” In his final article of 1896, published on December 1, he advised staying away from x-rays, "… so it may not happen to somebody else. There are real dangers of Rontgen radiation.”

These writings were the first mention in technical literature of the hazards of over-exposure to the mysterious, invisible rays. For the first time in history, something that human senses were not evolved to perceive was shown to cause tissue damage. The implication was a bit terrifying. It was something that could be pointed at you, and you would not know to get out of the way. Some of the effects were even delayed, and at a low rate of exposure, which was completely undetectable, one could be endangered and not even know it. The effect was cumulative. Tesla’s equipment was powerful. He was fortunate not to have set his hair on fire, but his health was never quite the same.

At the Sorbonne in Paris in 1898, Marie Curie, with some help from her husband, Pierre, discovered a new element, named “radium,” in trace quantities mixed into uranium ore. It had invisible, energetic influences on photographic plates, just as her thesis advisor, Henri Becquerel, had found in uranium salt two years before. She named the effect “radiation.” It was similar in character to Rontgen’s x-rays, only these came streaming freely out of a certain mineral, without any necessary electricity. A clue to the relation was its curious property of encouraging the formation of sores on flesh that was exposed to it.

The Curies were among the finest scientists the world had known, and their dedication to task, observational ability, and logic were second to none, but their carelessness with radioactive substances was practically suicidal. Marie loved to carry a vial of a radium salt in a pocket of her lab smock, because it glowed such a pretty blue color, and she could take it out and show visitors. Pierre enjoyed lighting up a party at night using glass tubes, coated inside with zinc sulfide and filled with a radium solution, showing off their discovery to amazed guests. He got it all over his hands, and on swollen digits the skin peeled off. Surely, the cause and

effect were obvious.7

In 1904 Thomas A. Edison, the “Wizard of Menlo Park,” had been experimenting with x-rays for several years. Edison thought of using x-rays to make a fluorescent lamp, and he proceeded to test a multitude of materials to find which one would glow the brightest under x- rays. His faithful assistant was a young, eager fellow, Charles M. Dally, who had worked for him for the past 14 years.

Dally was born in Woodbridge, New Jersey, in 1865, and he had served in the United States Navy for six years as a gunner’s mate. After discharge from the Navy he signed on at the Edison Lamp Works in Harrison, New Jersey, as a glass blower, and in 1890 he moved to the Edison Laboratory in West Orange to work directly for Mr. Edison. He was put to work evaluating the new lamp technology. Day after day, he held up screens of fluorescent material in front of an operating x-ray tube, staring directly at it to determine the quality of the light it produced. Nobody gave thought to any danger, but after a while Edison noticed that he could no longer focus his eye that he used briefly to test a new fluoroscope, and “the x-ray had affected poisonously my assistant, Mr. Dally.”

In the beginning Dally’s hair began to fall out and his face began to wrinkle. His eyelashes and eyebrows disappeared, and he developed a lesion on the back of his left hand. Dally usually held the fluorescent screen in his right hand in front of the x-ray tube, and tested it by waving his left hand in the beam. There was no acute pain, only a soreness and numbness. Dally kept testing the fluorescent screens. His solution to the physical deterioration was to swap hands, using his right to wave in front of the beam.

image001

Thomas Edison’s radical idea for a new type of light bulb was to use x-rays hitting a fluorescent screen. Clarence Dally tested many types of fluorescent paint for Edison by waving his left hand between an x-ray tube and a fluoroscope screen while viewing the effect through an eyepiece. The cumulative effect of hundreds of hours of x-ray exposure was fatal.

The lesion on his left hand would not heal, and conventional medical practice was at a loss to explain why. The pain became intolerable, and attempts to graft new skin onto the spreading sore were unsuccessful. The vascular system in the hand collapsed, and a cancer was detected at the base of the little finger. The physicians had no choice but to amputate the left hand at the wrist. Dally kept working on the x-ray project, holding the apparatus with his right and waving the stump in front of the screen.

In the meantime a deep ulceration developed on his right hand, and four fingers had to be removed. Eventually, both arms had to be amputated, one at the shoulder and the other above the elbow. All efforts to stop the progression of the disease eventually failed and Dally, after eight years of suffering, died in October of 1904. Edison was shaken, and he dropped all work on the fluorescent lamp. “I am afraid of radium and polonium too,” he commented, “and I don’t want to monkey with them.”

At the time there were no rules, regulations, laws, procedures, or helpful suggestions for the handling and storage of radioactive materials. It was understood that radioactivity could be induced artificially with electrical equipment, or it could be found in nature. The new elements that the Curies had extracted at great labor from uranium ore, radium and polonium, would turn out to be two of the most dangerous substances in the natural world, and both are banned from all but the most critical industrial uses. Both are alpha-ray emitters. An alpha ray is a particle, consisting of a clump of two protons and two neutrons. It is literally the nucleus of a helium atom, and it breaks free of the radium nucleus, flying outward into space.

In 1903 the physicist Ernest Rutherford calculated that the energy released from radium by a single alpha particle is a million times larger than the energy produced by any chemical combination of two molecules. The alpha particle has very limited range, and it is easily stopped by the uppermost layer of the skin, but the damage to healthy tissue to this shallow depth is significant. The greatest danger is in ingesting or breathing radium dust, as the destructive energy of each alpha particle released is fully deposited in body tissues. Atop that danger, there is the continuing breakdown of the decay products, the debris left after an alpha particle has jumped off the radium or polonium nucleus. These damaged nuclei emit an entire range of different radiations from further decays. By the time of Rutherford’s calculation, Pierre Curie was suffering unbearable pain from burns all over his body. He would lie in bed all night, unable to sleep, moaning. As a professor at the Sorbonne, the distinguished University of Paris, he asked for a reduced teaching load, complaining of having only “a very feeble capacity for work” due to his work refining radium out of uranium ore.

On April 19, 1906, after a luncheon of the Association of Professors of the Science Faculties, he walked to his publisher’s office to go over some proofs of his latest scientific paper. It was raining hard, and the street traffic was heavy. He found his publisher locked and closed down, due to a strike. Curie then turned and stepped into the rue Dauphine to cross, slipped on a wet cobblestone, and sprawled into the street. His head went under the wheel of a 6-ton, horse — drawn wagon loaded down with military uniforms. Curie died instantly.

It took 11 years, but eventually news of the discovery of radium penetrated the Ozark Territory, and in 1909 James L. Leib, a prospector and self-schooled geologist, saw a logical connection between the published properties of radium and the legend of the mysterious cave dating back to 1879. The spot price of radium at the time was, gram for gram, about one hundred times the value of diamonds, or $70,000 per gram. It was the most valuable material in the world, as it had found use in cancer therapy. It was true that radium would kill living tissue, but its working range was very slight. A carefully placed radium needle would wipe out a cancer tumor immediately adjacent to it without harming anything else. There was much demand.

With effort, Leib found the remaining member of the hunting party, Old Bill Boyceyer, still alive in Chance, Oklahoma. Old Bill was glad to tell the story yet again and give what he could remember as directions to the hole, with a caution: Don’t go in!

Leib found the cave, right where Boyceyer remembered, and he entered with unusual caution. He went in only far enough to pick up some bits of weird-looking, bluish rocks. Leib corresponded directly with Madame Curie, obtaining instructions for exposing photographic plates to the ore and confirming radioactivity. With the help of a photographer in Bentonville, Missouri, he succeeded. The few rocks he had brought back from the hole burned dark images into the plates, right through the dark-slides and black paper wrapping. Steel nails and a key left atop the plates showed up clearly as shadows, blocking the radiation. The radiographs were displayed at county fairs and apple shows all over the Ozarks, with Leib trying to drum up interest in opening up a radium mine. There were fortunes to be made, far greater than could be extracted from a mere gold mine.

In the spring of 1912 an enterprising man of vision from Chicago named John P Nagel bought the land out from under Leib and commenced developing it as a mineral excavation site. Nagel proudly owned a mining operation that employed several men, housed in a dormitory built from local materials, and photos show him standing over a production table heaped with big chunks of ore. Within a few years the easy pickings in the mine played out, it was abandoned, and the mystery hole in the Ozarks once again slipped into obscurity.

It is clear that Leib and Nagel saw a connection between the inexplicable burns on Bill Henry after his cave adventure and later tabloid descriptions of burns on lab technicians from handling radium. They reasoned that the hunting trio had stumbled upon a radium mine.

This account of the first documented radiation injury requires clarification.8 For one thing, there is no such thing as a radium mine. All the radium-266 that may have been in existence when the Earth was assembled from interstellar debris quickly disappeared, in astronomical terms, as its half-life is only 1,600 years. However, there is always a very small supply of radium in the Earth’s crust, because it is a decay product of uranium, which has been on this planet from the beginning. The radium also undergoes radioactive decay into radon gas, and an equilibrium exists between production and loss. Radium is therefore available in uranium deposits in trace amounts. Many tons of uranium must be processed to extract a few milligrams of radium-266. Note that none of the many minerals known to contain uranium are shiny, metallic, or particularly interesting looking. Uranium metal does not exist in nature, but if it did, it would quickly turn dark gray and soak up every oxygen molecule that passed its way.

Mining uranium in the confines of tunnels is, of course, dangerous without safety measures, but the danger is slow to affect the human body. Breathing the radioactive dust and gas in a mine for decades can cause lung cancer, but it can take 20 years for it to metastasize. Just standing in a uranium mine, leaning against the wall, or taking a nap in a dark corner will not cause anything. No person before or since has developed radiation burns on skin from being in contact even with pure uranium. It certainly gives off alpha, beta, and gamma radiation plus a chain of radioactive decay products, but the process is so slow, it cannot immediately affect living tissue. How then is this incident explainable? In 1879 there wasn’t even enough knowledge to make up such a story.

Henry, Dempsey, and Boyceyer had ventured into an undisturbed series of caverns lined with

uranium ore of exceptional purity.9 There was no cross-ventilation of the rooms, and radon-222 gas, with a half-life of 3.842 days, had been free to collect, undisturbed, as it seeped out of the walls, floor, and ceiling. It is a heavy, noble gas, not interacting chemically with anything, but emitting powerful alpha particles and associated gamma radiation. The back chambers of the cave may have collected radioactive gas for millions of years, as it displaced the cover gas of atmospheric nitrogen and some oxygen, again reaching an optimum equilibrium state between production and loss by radioactive decay. There was no mention of anything alive in the cave, and the apparently clean floors indicated that no bats had ever lived in there.

Radon-222 is the product of the decay of radium-226, and is, indirectly, a product of the slow decay of uranium-238, the predominant isotope in uranium ore. The rough walls of the cave gave a tremendous surface area of radioactive ore, and the loss of radon by rapid decay was slightly less than the production of radon by radium decaying at or near the inner surface of the cave. Radon production occurring significantly below the surface of the ore would not contribute anything, as the gas would decay into something else before it had a chance to diffuse to the surface. Without the abnormally high production rate due to the large surface area, the radon leaking into the cave would have dissipated faster than it was made, and trivial amounts would have built up. When the hunters advanced deeper into the cavern, they were breathing it instead of normal air. The lack of oxygen made them hallucinate, pass out, and talk crazy.

Uranium or thorium, regardless of how pure or how close to the skin or the length of the exposure, cannot produce the burns described on Henry. These natural materials are simply insufficiently radioactive, and the radium traces must be laboriously extracted and concentrated to start doing harm. The concentrated radon, however, in this highly unusual situation, could have done it. Why it seemed to affect Henry most severely is probably because he was the most aggressive explorer of the three, squeezing through every narrow passage, and perhaps the clothing he wore contributed to the effect. It was probably heavier or had more layers than what the other two explorers wore. The radon gas, not reacting chemically with anything, was free to diffuse into his clothing, subjecting him to alpha and gamma radiation as it decayed, but this would not explain his burns. It is also possible that Henry was the one of the three explorers who was unusually sensitive to radiation.

The decay products of radon-222 are a complex chain of 11 radioactive isotopes, from polonium-218 down to thallium-206, before it ends at stable, non-radioactive lead-206. Half­lives range from 0.1463 milliseconds to 22.3 years. All the radon decay products in the 11- member chain are solids, even at the atomic level, and they would definitely stick to his clothing and his skin, with each product extremely radioactive. As Henry squeezed through the cave, scrubbing the wall and standing in concentrated radon gas, his clothing was loaded up with radon decay products in the form of fine dust. Over the next few days, being portaged to the hospital in Carthage, he could have been hit with eight beta rays coming from each radon atom. His lungs started to clear as soon as he got into fresh air, but his clothing was heavily contaminated.

Alpha radiation consists of a large clump of nuclear particles, or nucleons, and it represents a sudden, radical crumbling of an atomic nucleus, just happening out of the blue. The resulting alpha particle is a helium-4 nucleus, complete, and when hurled at anything solid it can cause damage on a sub-atomic level.

The beta “ray” or “particle” (either term is correct) is actually an electron or its evil twin, the positron, banished from a nucleus and hurtling outward at high speed. It is the result of the sudden, unpredictable change of a neutron into a proton or a proton into a neutron down inside an atomic nucleus. This decay event also completely changes the atom’s identity, its chemical properties, and its place in the hallowed Periodic Table of the Elements. Meanwhile, the traveling beta particle, while much lighter than the alpha particle, is still an “ionizing” radiation. If it is a particularly energetic beta example (they come in all strengths), it can hit an atom that’s looking the other way with enough force to blow its upper electrons out of orbit, break up molecular bonds, and bounce things around, causing the matter in its way to heat up. On skin this effect turns up as a burn, or a reddening of the surface, just like you get from an aggressive tanning booth.

The gamma ray, yet another form of nuclear radiation, is an electromagnetic wave similar to ultraviolet light or x-rays, only it is far more energetic. A gamma ray of sufficient energy can penetrate your car door, go clean through your body, and out the other side, leaving an ionized trail of molecular corruption in its path. It is the product of a rearrangement or settling of the structure of an atomic nucleus, and it naturally occurs often when a nucleus is traumatized by having just emitted an alpha or a beta particle. Gamma rays can be deadly to living cells, but, unlike the clumsy alpha particle, they can enter and leave without losing all their energy in your flesh. It’s the difference between being hit with a full-metal-jacketed.223 or a 12-gauge dumdum. Both hurt.

Improbable as it seems, Bill Henry apparently suffered beta burns from exposure to concentrated radon-222 and radon decay products on the cave floor. He recovered from this acute dose and suffered no lasting effects, as is typical of brief radiation encounters. His

exposure was only on the surface and not ingested. With current knowledge and understanding

of radiation exposure symptoms, his socks would have been hazmat, held with tongs.10

Learning can be a slow process. In the first quarter of the 20th century, we at least developed an inkling of the danger of radiation, that unique peril that bedevils all things nuclear, particularly as medical applications were developed. Eventually the practice of testing an x-ray machine by putting an arm in the beam and watching it turn red became taboo, as technicians began failing to show up for work. As radiologists began to suffer from leukemia, bone cancer, and cataracts, the procedure for taking an x-ray picture evolved into assuring the patient in no uncertain terms that this procedure was absolutely harmless, then slipping behind a lead-lined shield before pressing the START button. Still, at the time there were no government-level safety standards in place, and radiation intensity or dosage measurements had not been established.

Radium therapy was widely hailed for definite curative effects in treating cancer, the dreaded disease that killed so many people, and this was the public’s introduction to radiation by nuclear decay. Further applications of this miracle metal by enthusiastic entrepreneurs would soon lead to tragic consequences, and the two most publicized disasters would change everything. The public, scientific, legislative, and industrial perceptions of radioactivity were about to be forever carved into stone in a distinctively negative way, and it would affect our basic sense of fear to this day.

William John Aloysius Bailey, one of nine children raised by a widow in a bad section of Boston, was born on May 25, 1884. He grew up poor but bright and ambitious, beginning school at Quincy Grammar and graduating near the top of his class from Boston Public Latin, famous as a launching point for ragamuffins into the Ivy League. He did poorly on his Harvard entrance exam, but he appeared sharp of mind and had a certain intense determination, and he was accepted as a freshman in the fall of 1903. Unfortunately, the cost of being a Harvard man was more than he could bear, and he had to drop out after two years. Not to be held back on a technicality, he would always boast of a Harvard degree and to have earned a fictitious doctorate from the University of Vienna, which if asked would claim to have never heard of him.

Out of school, Bailey hit the street running. He set up an import-export business in New York City, with the master plan to be appointed as the unofficial U. S. trade ambassador to China. This didn’t happen. He bounced around a while in Europe, acquiring a worldly patina, and he wound up in Russia drilling for oil at the beginning of World War I in 1914. This proved unprofitable and life-threatening, so he made it back home, where he worked on several mechanical inventions in his workshop. Barely half a year later, on May 8, 1915, he was arrested in New York on charges of running a mail-order con out of his apartment. He had been accepting mail deposits of $600 each for automobiles to be picked up somewhere in Pittsburgh. No cars showed up, and Bailey had to spend 30 days in jail. His mistake had been trying a small number of grand thefts. Reasoning that punishment would be less likely for making a great number of petty thefts, he turned to patent medicines, researching to find what the public thought they needed most.

Brilliant at this end of commerce, he came up with Las-I-Go For Superb Manhood, guaranteed to treat the symptoms of male impotence. He was finally brought to justice for this outrageous product in May 1918 and fined $200. The interesting part of this turn of events was the active ingredient in Las-I-Go: strychnine.

Known since ancient times as a deadly poison, strychnine is a colorless crystalline alkaloid found in the seeds and bark of plants of the genus Strychnos, family Loganiaceae. It is a

powerful neurotoxin, useful if you want to kill small animals and birds.11 For a human, the lethal

dose is about a tenth of a gram.12 It affects the motor nerves in the spinal cord. Transmission of a nerve impulse requires several chemical actions, one of which is an inhibitor chemical called glycine binding to an assigned port on a nerve structure. The presence of the glycine inhibitor sets the trigger point of a nerve impulse. Strychnine overcomes the glycine and binds to its port, depriving the nerve of its set-point; and without this control, the muscle at the end of the nerve will contract at the slightest impulse. This leads to painful muscle seizures and, with a sufficient number of nerves affected, death.

However, in very low doses strychnine can act as a nerve stimulant, and I can see how Bailey, and most likely others, saw it as a clever treatment for erectile disorder. Known for both its poisonous and medicinal uses in ancient China and India, strychnine made the news in the Olympic Games of 1904, held in St. Louis, Missouri. The winner of the 24.85-mile marathon race was an American, Fred Lorz of the Mohawk Athletic Club of New York, but he was quickly

disqualified after loud protests from spectators.13 It seems that Lorz, complaining of being very tired after having run nine miles, was given a lift in his manager’s car, which completed 11 more miles of the race before it broke down. Lorz, somewhat refreshed, dismounted the stalled machine, turned to salute goodbye, and ran the remaining five miles to break the tape at 3:13:00.

Behind Lorz by 00:15:53 was Thomas Hicks, another American runner, but an English import who worked in a brass foundry in Boston. At about 10 miles from the finish, Hicks was exhausted, and he begged his trainers to let him stop running and lie down on the soft gravel for a while. “Not on your life,” he was told, and his trainers gave him a sub-lethal dose of strychnine, about a milligram, plus a shot of brandy. Feeling slightly vigorous, Hicks was able to complete a few more miles, but he collapsed and had to have another shot of strychnine. He had to be carried across the finish line by two trainers, and it took four doctors to get his heart going again so he could stagger to the podium and receive his gold medal for the marathon. Another dose of the stimulant probably would have killed him.

Arsenic, also a well-known pesticide and a favorite poison in old murder mysteries, has also been used in sublethal doses as a medicine, treating everything from syphilis to cancer. An arsenic compound is still used to treat promyelocytic leukemia, and the isotope arsenic-74 is used as a radioactive tracer to find tumors. In fact, after World War I, radium sublethal dose treatment had become the glamour field of medicine. The reality that swallowing 0.2 milligrams could kill you simply meant that it was one of the most powerful and exciting of the deadly poisons that surely would cure diseases in trace quantities. Marie and Pierre Curie set out to find the effects that minute quantities of radium would have on living cells, animals, and ultimately humans. Sensing a Nobel Prize opportunity, British researchers also launched several studies, referring to it as “mild radium therapy” to distinguish it from the more radical radium needle treatment used to kill cancer tumors.

The principle of sublethal radiation treatment can be traced to the homeopathic theories of the 19th century and even to the legendary healing powers of the great European hot springs, dating back at least to Roman times. Just bathing in certain water that bubbled out of the ground seemed to be curative, and there was always the plan to bottle some of it so you could take some of the magic home with you. The enduring mystery of the springs, however, was that bottled water seemed to lose its curative potency after a few days sealed in a bottle. Why? In 1903, with recent discoveries of radioactive elements and their decay rates, it was found that the active ingredient in European springs was radon gas with a half-life of only 3.824 days, introduced into the water underground from the decay of radium traces in the rocks. Might this alpha-particle radiation be the triggering agent that accounts for the puzzling operation of the endocrine system? Could a small radiation flux be not only beneficial, but necessary to sustain life? In 1921 Frederick Soddy received the Nobel Prize in chemistry for his work in radioisotope research, and in 1923 Frederick Banting and John MacLeod won the Nobel Prize in physiology for discovering that the hormone insulin controls the body’s transduction of energy. The seeming connection between these two hot topics, the discovery of nuclear energy release and the conversion of sugar into energy, was noticed by scientists and

entrepreneurs.14

A presentation at the 13th International Congress of Physiologists by the German researcher George Wendt only intensified the theoretical atmosphere. Wendt had found that moribund, vitamin-starved rats would be temporarily rejuvenated by exposure to the alpha radiation coming from radium. The old homeopathic principle seemed valid: a poisonous substance in large quantities would destroy life, but in trace amounts it was beneficial, even necessary. By the end of the war in Europe, radioactive liniments, candles, and potions of every kind were available to a buying public. In the U. S. in 1921, interest surged after Marie Curie, twice the winner of a Nobel Prize, made an exhausting whistle-stop tour of the country. If pinned down with the right question, she would acknowledge the medicinal properties of radiation as a catalyst for essential body functions.

William Bailey, always on the lookout for a new way to redistribute wealth, jumped into the fray. He formed a company named Associated Radium Chemists, Inc. in New York City and sold a line of radioactive medicines. There was “Dax” for coughs, “Clax” for influenza, which had recently wiped out 3% of the world’s population, and “Arium” for that run-down feeling. Unfortunately, none of these concoctions actually worked, and Bailey’s operation was shut down by the Department of Agriculture for fraudulent advertising. Never deterred, he soon started two new corporations: the Thorone Company, making a radioactive treatment for “all glandular, metabolism and faulty chemistry conditions” (impotence), and the American Endocrine Laboratory, producing a device called the Radioendocrinator. This contraption was designed to place a gold-plated radiation source near where it was needed. Around the neck for an inadequate thyroid gland, tied in back for the adrenal glands, and, for men who may be specially concerned, a unique jock-strap held it comfortably under the scrotum. Suggested retail price was $1,000, but the market quickly saturated.

Bailey moved to East Orange, New Jersey, ground zero for making interesting chemicals, in 1925 and began manufacture of his most successful product, Radithor, a triple-distilled water enriched with radium salts. This radioactive elixir was guaranteed to practically raise the dead, curing 150 diseases from high blood pressure to dyspepsia. It was advertised as “Perpetual

Sunshine.” It came in a tiny, half-ounce clear glass bottle, with a cork in it and a paper wrapper around the stopper. Many radium medicines were being sold at the time, and most were absolute frauds, either having a slight bit of rapidly decaying radon or nothing at all dissolved in the water. Bailey was true to his word. Each dose of Radithor contained one microcurie each of

radium-226 and radium-228.15 It was genuinely poisonous.16 Bailey bought his material from the nearby American Radium Laboratory, marked it up by about 500 percent, and resold it under the banner “A Cure for the Living Dead.”

The public need and the advertising slogans were good, but the most brilliant of Bailey’s promotional setups was his rebate plan. He promised physicians a 17-percent kickback for every bottle of Radithor prescribed. The American Medical Association angrily labeled it “fee­splitting quackery,” but it helped sell over 400,000 bottles of the stuff in five years. A case of 24 bottles retailed for $30. Dr. William Bailey became comfortably rich.

Into the middle of this campaign fell Eben McBurney Byers, socialite, man about town, free­wheeling bachelor, Yale man, accomplished athlete, and wealthy chairman of the Girard Iron Company, which he inherited from his father. Powerful, handsome, vigorous in all pursuits, and broad of chest, Byers had competed in the U. S. Amateur Golf Tournament every year since 1900 and won it in 1906, two strokes over George Lyon. In his Pittsburgh home was a room dedicated only to skeet-shooting trophies, and he loved keeping racing horses in his stables in New York and England. He also maintained homes in Southampton, Rhode Island, and Aiken, South Carolina.

In the fall of 1927 he was aboard a chartered Pullman, returning from the Yale-Harvard football game, when he fell from his upper berth to the floor, injuring an arm. There was an ache in the bone that wouldn’t go away, despite the attentions of his trainers and personal physicians. When it started to affect his golf game and possibly his libido, Byers became very concerned, and he cast about for a doctor who could fix it, finding Dr. Charles Clinton Moyar right in his home town. Dr. Moyar, finding the source of the pain difficult to pin down, prescribed Radithor.

In December 1927 Byers began drinking three bottles a day, and he immediately felt better. He started ordering it by the case, straight from the manufacturer. He became a believer, and he fed it to his friends, his female acquaintances, and his favorite horses. Reasoning that if a bottle made him feel good, then many bottles would make him feel marvelous, he eventually downed about 1,400 bottles of Radithor by 1931.

There is a problem with ingesting a significant amount of radium. Radium shares a column on the Periodic Table of the Elements with calcium. This means that both elements have the same outer electron orbital structure, which means that they form chemical compounds in basically the same way. With this chemical similarity between radium and calcium, when the human body

finds radium in its inventory, it will use it for rebuilding bones.17 Byers’s range of beverage intake did not necessarily include calcium-rich milk, and when his metabolism demanded material for repairing that hairline fracture in his arm, it found plenty of radium on hand.

Bones may seem like hard, immutable structures made of an inorganic calcium compound, when actually they are constantly being torn down and rebuilt. The bones with the most material turnaround are the jaws, which are under tremendous stress from having to support the teeth and chew food. It is surprising how much effort goes into constantly shoring up teeth, which seem barely alive but are also under constant maintenance. By the time Byers stopped taking Radithor he had accumulated about three times what is now known as the lethal dose, and it went straight to his bones and teeth. An x-ray machine was not necessary to take a cross­sectional picture of his teeth. They would light up a photographic plate with their own radiation output.

On February 5, 1930, the Federal Trade Commission filed an official complaint, claiming that Dr. Bailey had advertised falsely by claiming that Radithor could be beneficial and would cause no harm. Bailey took umbrage, proclaiming “I have drunk more radium water than any man alive, and I have never suffered any ill effects.”

Byers could not make such a claim. He started to complain about unusual aches and pains. He had lost “that toned-up feeling,” and he was losing weight. Maybe it was just age catching up with him, who had just passed his 50th birthday, or perhaps it was just a bad case of sinusitis, as his doctor opined. He started having blinding headaches and then toothaches. Soon, his teeth began falling out. Starting to panic, Byers consulted a specialist, Joseph Steiner, a radiologist in New York City.

To Steiner, the problem looked like “radium jaw,” a newly identified occupational disease that had been seen in watch-dial painters. The common factor was, of course, the presence of radium in the person’s life. It goes straight to the jaw. Frederick B. Flinn, the radium expert from Columbia University, was called in, and he grimly confirmed Steiner’s suspicion. There was absolutely no known cure or even a treatment of the symptoms. Although Dr. Moyer, Byers’s personal physician, refused to accept the diagnosis, the patient’s health was steadily declining. The once solid hunk of man wasted down to 92 pounds but remained alert and lucid. His bones were splintering and dissolving.

The Trade Commission, seeing this as a further indictment of Bailey’s work, called on Byers to testify in September 1930. He could not make the trip, so attorney Robert H. Winn was sent to his Southampton mansion to take a deposition. His written description of Byers says it all:

A more gruesome experience in a more gruesome setting would be hard to imagine. We went to Southampton where Byers had a magnificent home. There we discovered him in a condition which beggars description. Young in years and mentally alert, he could hardly speak. His head was swathed in bandages. He had undergone two successive jaw operations and his whole upper jaw, excepting two front teeth, and most of his lower jaw had been removed. All the remaining bone tissue of his body was slowly disintegrating, and holes were actually forming in his skull.

Byers was moved to Doctor’s Hospital in New York City. He died on March 31, 1932, at 7:30 am. The Trade Commission had shut down Bailey’s operation with a cease-and-desist order on December 19, 1931.

Eben Byers had been rich and well known, and the New York Times took his death as important and worthy of front-page reporting. The headline was crude, but it still has a compelling effect on even the casual reader: THE RADIUM WATER WORKED FINE UNTILE HIS JAW CAME OFF. On April 2 the subtitles started to unwind the story: DEATH STIRS ACTION ON RADIUM CURES.” TRADE COMMISSION SPEEDS ITS INQUIRY. HEALTH DEPARTMENT CHECKS DRUG WHOLESALERS. AUTOPSY SHOWS SYMPTOMS. MAKER O F RADITHOR” DENIES IT KILLED BYERS, AS DOES VICTIMS PHYSICIAN IN PITTSBURGH. FRIENDS ALARMED TO FIND MAYOR HAS BEEN DRINKING

RADIUM-CHARGED WATER FOR LAST SIX MONTHS.18 This intense tabloid journalism pushed all the right buttons. The reading public was justifiably

horrified, and the dangers of radioactive materials came into sharp and sudden focus. The Federal Trade Commission, feeling empowered, reopened its investigation, and the Food and Drug Administration began a campaign for greater enforcement power and new laws concerning radioactive isotopes. Sales restrictions on radiopharmaceuticals, still in place, date back to the Byers affair, and the market for over-the-counter radiation cures collapsed immediately.

William Bailey was not one to be discouraged by federal intervention, and he went on to market a radioactive paperweight, the “Bioray,” acting as a “miniature sun” to give you the benefits of natural, environmental cosmic rays even as you sat in your dismal office space. The Great Depression was killing sales, but he kept on, selling the “Adrenoray” radioactive belt clip and the “Thoronator,” a refillable “health spring for every home or office” designed to infuse ordinary tap water with health-giving radon gas. Fortunately, none of his new products were noticeably radioactive.

Meanwhile, a second death-blow to the popularity of radium was developing on the other end of the ladder of success. Thousands of young women were working in factories using radium paint, and they were beginning to die off in horrible ways. They lacked the celebrity of Eben Byers, but there were so many of them that the problem became impossible to ignore. This highly successful industry was making profits in Canada, Great Britain, and France, with particular enthusiasm concentrated in the United States. Its only goal was to make things glow in the dark.

The quest to make a paint that would glow by itself goes back as far as 1750 in industrial Europe. The first concoction to be advertised and sold was probably called “Canton’s Own,” manufactured by a Professor Tuson in London in 1764. By 1870 there were competing formulae, and luminous paints were selling briskly. Most used strontium carbonate or strontium thiosulphate. It had been found, probably accidentally, that strontium compounds would seem to store sunlight and would then give it back after the sun went down. We now know this phenomenon as a “forbidden energy-state transition” in a singlet ground-state electron orbital. The strontium, like everything else, absorbs and then returns a light photon that hits it, but in this case the return is delayed. The strontium atom, excited to a higher energy state by the absorption of light, “decays,” as if it were radioactive, reflecting the light back with a half-life of about 25 minutes. After four hours of glowing, the strontium compound needs to be re-charged with light. By 1877, phosphorescent paint was all the rage. The insides of train cars were painted with it, so your reading would not be interrupted when the train passed through a dark

tunnel. Glow-in-the-dark wallpaper was sold.19 Street signs and souvenir postcards used it.

The discovery of radium and its radioactivity in 1898 put an entirely new spin on the concept of phosphorescent paint. It did not take long to figure out that a speck of radium carbonate, invisibly small, mixed with zinc sulphide would glow not for four hours, or four years, but forever. There was never a need to charge the material with light. All the excitation of the zinc came from the radiation emitted by the radium. This world-changing discovery was made not by a crack team of physicists, but by Frederick Kunst, a gemologist working at Tiffany & Co. in New York City. He teamed with Charles Bakerville, a chemistry professor at the University of North Carolina, and they came up with the formula for luminous paint, receiving a U. S. patent in

Ignoring the concept of patent rights, the Ansonia Clock Co. of New York began selling timepieces with self-luminous dials in 1904, supposedly using their own formula. The concept was an immediate success. Limits to the availability of the active ingredient, radium, kept sales from going out of control, but the glowing clock-dial was an attractive novelty.

In 1914 came the First World War. It was a new type of war, fought partly in the dark of night. All critical equipment needed to be lighted, but not so brightly that it would reveal your position to the enemy. Radium paint was the logical, perfect solution, and demand on both sides of the conflict became huge. Everything needed to glow: gun sights, compass cards, elevation readouts on cannons, land-mine markers, and, most urgently, watch dials. Watches were used widely, to synchronize night charges by mile-wide fronts of men emerging suddenly from their trenches. In 1913 the United States Army began equipping every soldier with a luminous-dial timepiece, and there were 8,500 in use. The radium-dial watch became a necessary part of living during that war, and the need came home with the surviving troops. By 1919, the number of glowing timepieces turned out in the U. S. had grown to 2.5 million. The Ingersoll Watch Co. alone made a million radium watches per year, and the demand for the rare metal put a maximum load on the mines in Colorado and Utah. Hospitals began to protest that the supply of radium was drying up, and thousands of cancer patients would be denied the only effective treatment for some forms of the disease. The sum of all radium inventories in the world amounted to only hundreds of milligrams, and any application had to be judicious and without waste.

There were many names given to the glow-in-the-dark product: Luma, Marvelite, Radiolite, and Ingersollite. The most memorable was probably “Undark,” sold by the Radium Luminous Material Corporation of New York City. By 1917 it was being used for doorknobs and keyholes, slippers, pistol sights, flashlights, light pulls, wall switches, telephone mouthpieces, watches, and house numbers. The advertising slogan, showing the address numbers on a darkened front door, was “I want that on mine.” With things self-illuminating, you would never have to light a match to find them in the dark. In Manhattan, “radioactive cocktails” were served in the best bars, and a musical named Piff! Paff! Pouff! celebrated the wonders of ionizing radiation with The Radium Dance, written by Jean Schwartz. Uranium mining was stepped up all over the world, in Portugal, Madagascar, Czechoslovakia, Canada, and even in Cornwall, England, as the demand outstripped supply.

Into this madness stepped the American entrepreneurial spirit, building factories from West Orange, New Jersey, to Athens, Georgia, to cover the numerals on watch dials with self­luminous paint. Young women were hired to do the meticulous manual work of applying the paint, as male workers were thought incapable of sitting still for hours at a time to do anything useful. The workers were paid generously, at $20 to $25 per week, when office work was paying $15 a week at most. By 1925, there were about 120 radium-dial factories in the United States alone, employing more than 2,000 women.

Painting the numbers on a watch face was not easy. The 2, 3, 6, and 8 were particularly difficult. You had to have paint mixed to the right viscosity, a steady hand capable of precise movement, and good eyesight. One woman did about 250 dials per day, sitting at a specially built desk with a lamp over the work surface, wearing a blue smock with a Peter Pan collar. The brush was very fine and stiff, having only three or four hairs, but it would quickly foul up and have to be re-formed. All sorts of methods were tried for putting a point on the brush. Just rubbing it on a sponge didn’t really work. You needed the fine feedback from twirling the thing on your lips. Some factory supervisors insisted on it, showing new hires how it is done, and some factories officially discouraged it while looking the other way. Everybody did it, sticking the brush in the mouth twice during the completion of one watch dial. The radium-infused paint was thinned with glycerin and sugar or with amyl-acetate (pear oil), so it didn’t even taste bad.

The practice of tipping a paint brush started contaminating everybody and everything in a watch dial factory. Painters noticed that after sneezing into a handkerchief, it would glow. You could see the brush twirlers walking home after dark. Their hair showed a ghostly green excitation, and they could spell out words in the air with their luminous fingers. Some, thinking outside the box, started painting their teeth, fingernails, eyelashes, and other body parts with the luminous paint, then stealing away to the bathroom, turning out the lights, and admiring the effect in the mirror. There was no problem finding gross radium contamination in a factory. There was no need for a radiation detection instrument. All you had to do was close the blinds. Everything glowed; even the ceiling. Most workers were each swallowing about 1.75 grams of radioactive paint per day.

By 1922, things started going bad in the radium dial industry. In the next two years, nine young radium painters in the West Orange factory died, and 12 were suffering from devastating illnesses. US Radium, the biggest watch-dial maker in town, strongly denied that anything in their plant could be causing this. No autopsies were performed, and the death certificates recorded anemia, syphilis, stomach ulcers, and necrosis of the jaw as causes. The dead and ailing, however, had dentists in common, and these health professionals had noticed unusual breakdowns of the jaws and teeth in all of these women. It was beginning to look like another case of an occupational hazard, following closely behind tetraethyl lead exposure at General Motors and “phossy jaw” from white phosphorus fumes in the match industry. Could it be the radium?

In 1925 Dr. Edward Lehman, the chief chemist at US Radium, died, and an autopsy showed that his bones, liver, and lungs were heavily damaged by radiation. His skeleton exposed an x — ray plate without the use of an x-ray machine, it was so radioactive. He hadn’t even picked up a paint brush. All he had done was to breathe the air in the factory. The Harvard University School of Public Health was brought in by US Radium to examine the factory and give it a clean bill of health. Far from it, the survey found not one worker in the plant with a normal blood count, and the radiation level on the floor was five times above background. The critical report was buried, and a press release issued on June 7, 1928, denied that the study had found any evidence of “so-called radium poisoning.”

Sabin A. von Sochocky, immigrated from Austria back in 1913, the inventor of Undark, and the man who started Radium Luminous Materials, was also beginning to feel the effects of occupational radiation. Back in his day, he had been so bold as to immerse his arm up to the elbow in radium paint. Now, his jaw disintegrated, and his hands were coming apart. It was clear that radium was a bone-seeker, leading to no good outcome. Sochocky reversed his attitude, becoming a spokesman against the use of industrial radium and a source of useful admissions. He made available to authorities the vast collection of his papers and company records, and the relationship between luminous paint and death began to clarify. He died at the

age of 46 in November 1928 of aplastic anemia, having lost the use of the marrow in his bones.

Finally, a plant worker at US Radium in West Orange, Grace Fryer, decided to sue the company for having subjected her to known health hazards. Five women threw in with her, and the sympathetic press labeled them the “Legion of the Doomed,” the “Living Death Victims,” and the “Radium Girls,” the name that echoes today. They accused the company of subjecting them to illness that would end soon in extremely unpleasant death. Each demanded a quarter million dollars in compensation. The press went viral, and public sympathy surged.

US Radium, still denying everything, talked strategy with their legal team as they delayed the proceedings with everything that could be thrown in the way. They eventually settled out of court for a $10,000 lump sum to each woman plus a $600-a-year pension and coverage of all medical expenses. The plant closed. On August 14, 1929, another worker died just eight days after quitting the Radium Dial Co. in Ottawa, Illinois. Margaret “Peg” Looney, an Irish-Catholic redhead, all of 5 foot 2 inches tall and one of ten children, had worked as a dial painter since graduating from high school at 17. After painting for three years, she started developing trouble with her teeth and an overwhelming weakness. She kept going, needing the income, and her family watched in horror as she started pulling pieces of jaw out of her mouth. She died at age 24 of diphtheria, according to the death certificate, after seven years of radium absorption. She

was buried in St. Columba Cemetery.21 The Radium Dial plant closed shortly afterward,

fearing a swell of litigation.22

Relentless journalism had made the public painfully aware of the dangers of the radium and its radiation output as no lecture, authoritative text, or a semester of study could. The accounts of horrible disfigurements and lingering deaths suffered by Eben Byers and the Radium Girls still reverberate and became the unfortunate benchmark for the effects of radiation exposure. The federal government became concerned with occupational safety, and labor laws were crafted in Congress resulting from the radium scandals. Radiation tolerance levels were established, and the concept of industrial hygiene for working with radioactive materials was born. The Food and Drug Administration found new powers of enforcement. A fascination with everything radium turned completely around.

This was hardly the best way to introduce the public to the sensitive topic of radiation safety. Isotopes of radium, the first nuclear radiation sources to be commercially exploited, are probably the worst examples out of thousands of radioactive isotopes. Radium has nearly absolute body burden, or a tendency to stay in the metabolism forever, and there are few ways it can escape the biological systems. Its radiations cover a wide spectrum, from alpha to gamma, with unusually energetic rays, and it targets many essential organs. It destroys everything around it, so quickly that cancer doesn’t even have time to develop.

Still, there are ironies and unanswered questions concerning this baptism by fire. Radium dial watches were still being made until 1963, when finally they were banned in the State of New York. The US Radium name went away in 1980, when the plant in Bloomsburg, Pennsylvania

was renamed Safety Light Corporation, specializing in luminous paints incorporating tritium.23

That these radium-dial factories continued operation for decades is not surprising, given the renewed needs for self-luminous equipment during the Second World War, but the persistence of radioactive water for drinking and bathing is astounding. In the 1980s, mineral water became

all the rage. It was obviously a better beverage than municipal tap water, which is basically rain-water fortified with fluoride and sanitized with chlorine. Mineral water bubbles up from deep underground, and that (plus its cost) makes it superior to tap water, but we had forgotten why. It is supposedly health-giving because it is radioactive, using the ancient logic of homeopathic medicine. A trace of something that will kill you will only make you stronger. Spring water

dissolves soluble mineral substance out of the deep rock, and that would be uranium oxide.24 Spring water is further fortified with microscopic radon gas bubbles from the radium decay in these same rocks.

This fascination does not end there. Incredibly, the world remains studded with thousands of disease-curing radium springs from Hot Springs, Arkansas, to the Gastein Healing Gallery in Austria. Japan, a country that seems particularly sensitive to the concept of trace radioactivity in the biosphere, has 1,500 mineral spas. An example, Misasa, in the Tohaku District in Tottori, boasts springs of radium-rich water with radon bubbles. The name “Misasa” means “three mornings,” meaning that enjoying an early soak in the magic water thrice will cure what ails you. The town organizes a yearly Marie Curie festival to honor the discoverer of the active ingredient.

Probably no health spa currently does it with more enthusiasm than Badgastein. In 1940 the Third Reich, desperate for wealth, decided to reopen the ancient gold mine running through the Hohe Tauern range in southern Austria. Pickings for gold turned out slim, but they noticed that the enslaved workers were getting healthy working in the hot, radon-contaminated tunnel. This observation was not lost, and in 1946 the Heilstollen or Thermal Tunnel was opened up and equipped with small cars to carry bed-ridden patients through the radon surrounded by rock walls, crusty with uranium. By 1980, a million patrons had stayed at least one night at Badgastein. The current brochure for the spa facility, listing diseases that are cured in the tunnel, puts radium advertising copy from 1925 to shame:

Inflammatory rheumatism; Bechterew’s disease; arthroses; asthma; damage to the spinal column and ligament discs;

inflammatory nerves; sciatica; scleroderma; paralysis and functional disturbances after injuries; circulatory problems of the

arteries; smoker’s leg; diabetes, arterio-scleroses; problems with venous blood circulation; heart attack risk factors; infertility

problems; premature aging; potency disturbances; urinary tract, gout, and suffering due to stones; and paradontosis.

Even America, home of the Radium Girls, has not lost its love of radioactive water. The use of medicinal springs in the New World dates to prehistory, when the aboriginal residents flocked to the healing fluids, and there are now five towns named “Radium” and three named “Radium Springs” in the United States. One of the most patronized spas in the Western Hemisphere is Radium Hot Springs, in the Kootenay region of British Columbia, Canada.

There is further paradox to the discovery of radiation sickness. William Bailey, the entrepreneur who killed Eben Byers, had ripened to the age of 64 when he died of bladder cancer unrelated to radium in 1949. Twenty years later, his remains were disinterred for study by Professor Robley D. Evans, Director Emeritus of the Radioactivity Center at MIT. A count of radioactivity lingering in his bones proved that Bailey wasn’t lying when he claimed to have ingested more Radithor than anyone else. Yet, he had never complained of a toothache, much less died from it. Decades of study suggested that the effects of large radiation loads vary from individual to individual.

Can some people tolerate chronic high radiation better than others? Are certain people better at producing protective hormones such as granulocyte colony-stimulating factor and the interleukins, stimulating the growth of blood cells under radioactive stress?

Hundreds of women are thought to have died or been injured by radium ingestion, but thousands worked at the painting desks. Why didn’t they all die? In 1993, when the Argonne National Lab study of radium workers was shut down, there were 1,000 Radium Girls still alive and complaining about the working conditions back in ’25. Could we eventually evolve into a race that can withstand high levels of radiation?

Madame Marie Curie, discoverer of radium, died on July 4, 1934, in a sanatorium in Geneva, Switzerland, of a blood disorder for which there was no cure. After many years of sickness, the disease was finally diagnosed as aplastic pernicious anemia. Her bone marrow, contaminated with radium, was unable to produce red blood cells, and the extensive exposure to x-rays during her medical volunteer work in World War I had contributed to the condition.

Her daughter, Irene Joliot-Curie, had taken up her mother’s profession and became a Nobel Prize-winning radiation scientist, working beside her in the Radium Institute. Joliot-Curie was working at her bench in the laboratory in 1946 when a sealed capsule of radioactive polonium exploded in her face. She contracted leukemia caused by her long-term exposure to radiation and the unfortunate large dose she received in the accident at the bench. She died on March 17, 1956, at the age of 58 in the Curie Hospital in Paris.

6 Rontgen could have mail-ordered a mass-produced vacuum tube, called a Pulyui Lamp, from Poland and saved himself some time, if communications

and advertising technology had been what they are today. Ivan Pulyui, a college professor at the University of Vienna from the Ukraine, is sometimes credited with having sold the first x-ray tubes, before the x-ray was discovered. The claim is semi-true. His Pulyui Lamp was available perhaps as early as 1882, but it was sold as a light bulb, and Pulyui did not realize that it was streaming x-rays along with a blue glow until he read Rontgen’s paper in 1895. Pulyui immediately saw the medical diagnostic use of x-rays, and his lamps became quite useful.

7 Or were they? Much has been repeated about Pierre Curie’s radiation burns on his hands and fingers and later on his body Consider, instead, the fact

that for every ton of uranium ore the Curies processed in their crude laboratory, they had to use five tons of concentrated sulfuric and hydrochloric acid. Over a few years, they ran through eight tons of ore. Although the Curies were brilliant, creative scientists, their laboratory hygiene was not really up to the standards of the time, and Pierre was the less careful of the two. He didn’t even wear gloves, and he got acid all over himself. Sulfuric acid desiccates living tissue, killing it, and hydrochloric acid digests it.

8 Technically, the initial radiation injury happened the first time someone was sunburned, an incident which is lost to prehistory The case of Bill Henry in

the cave is, however, the first that I have found where a person may have suffered an acute radiation injury of local nuclear origin. Chronic radiation sickness has been documented since the early 15th century when copper miners in the Scheesberg area of St. Jaochimsthal, Bohemia, began complaining of a mysterious respiratory illness. Miners were dying at an alarming rate of the bergsucht, or mountain sickness. It was easily explained as secret machinations of the evil mountain dwarves, who were enraged that people were tearing up their domain with picks and shovels. An alternate explanation is that radon gas from uranium ore mixed in with the copper, diluted in their breathing air, was alpha decaying in their lungs and leaving behind radioactive polonium-218, bismuth-214, and lead-210. Breathe that long enough, and you will develop lung disease.

9 Or had they? The minerals described in the garbled accounts really don’t seem like uranium-bearing ore. It actually could be a description of some sort

of thorium-phosphate crystal or a pure form of monazite mineral. Thorium has a slow alpha-beta-gamma disintegration much like uranium, resulting
in radium-228, which is a fairly active beta-emitter. Also in the decay chain are radium-224 and radon-220, both alpha emitters. The tailings from the
old Pea Ridge iron mine in Washington County Missouri, are now seen as a source of thorium, which could be a potential reactor fuel. However, in
2009 John Gustovson, a geologist, discovered what could be one of the “biggest deposits of undiscovered uranium in the U. S.” in southern Missouri.

10 And, what happened to the dog? How did the dog, close to the ground and gulping radon through the nose, survive? How did he come out the other side of the mountain in a cavern with no cross vent? It may be that neither the cat nor the dog actually went through the cave. I think the cat faked out the dog, looking as if he were plunging into the cave, but skipping left and, under the cover of dense foliage, hot-footed around and down the mountain, never to be seen again. The dog did go in the cave, but he stopped at the strange, overpowering smell of radon. The alpha particles from radon directly activate olfactory nerve endings, without any chemical reaction, and it makes an odd “metallic” odor. Dog backed out, and the hunters, again looking through thick brush, didn’t see him leave. Dog tried to clear his nose and reacquired cat-smell. He resumed the pursuit, but by this time the cat was long gone. He wound up on top of the mountain, casting about. A report that they “sent the dog back in, and he again came out on top” is questionable. You don’t “send” a dog into a black hole stinking of radon.

11 Listen to “Poisoning Pigeons in the Park,” by Tom Lehrer, recorded live in 1959 for the album “An Evening Wasted with Tom Lehrer.”

12 Technically, the LD-50, or lethal dose with 50 percent probability can be estimated roughly from a surprisingly small number of recorded strychnine poisonings. It ranges from 15 to 120 milligrams, administered orally.

13 Fred Lorz (1884-1914) was banned from competition for life by the judgmental Amateur Athletic Union, but he was reinstated after a sincere apology and some palm lubrication. He went on to win the Boston Marathon, cleanly, in 1905, hitting the tape at 2:28:25.

14 And the beat goes on. The concept that small doses of radiation and other toxins are not damaging to human health and are actually beneficial remains alive. It is now called “hormesis,” and serious research started decades ago continues to this day Studies have included everything from alcoholism in roundworms to radiation victims in Japan. As a scientific pursuit, hormesis researchers are plagued by an unusually high level of controversy and rancorous debate, and any published study is subject to being summarily torn to pieces in review. At the opposite end of the belief spectrum is the “linear non-threshold” or LNT opinion, holding that any amount of radiation or toxin, no matter how small, is damaging, and there is no threshold to get under. The United States Food and Drug Administration, Environmental Protection Agency and Nuclear Regulatory Commission are steadfastly of the LNT persuasion, and harbor no acceptance of a beneficial radiation level. Both positions, LNT and hormesis, are probably correct under definable circumstances, but the jury is still out.

15 Not to sow confusion here, but there are two completely different species of radium at work in Radithor. The radium-226 is a product of uranium-238 decay It occurs as traces in uranium ore, and it has a half-life of 1,600 years. Radium-228 is a product of thorium-232 decay It occurs in monazite

sand, or thorium ore, and it has a half-life of 5.75 years. Unlike radium-226, this isotope of radium emits beta rays instead of alpha particles, and at the time it was a byproduct of the gas mantle industry. The syllable “thor” in Radithor stands for mesothorium, an obsolete term meaning radium-228, and the “Radi” means radium-226.

16 That doesn’t sound like a lot, but it is. It means that the radium-226 and radium-228 in that bottle were decaying at a rate of over 4 million times per second. Even after sitting on a dusty shelf for over 80 years, an old, dried-up bottle of Radithor will swamp a Geiger counter. Each of those 4 million radiation bursts per second finds something to hit and destroy in the body of the consumer. Once the radium is gone or decayed away the resulting products keep radiating, adding to the injury In the case of radium-228, the radiation dose rate actually increases by over 10% after the person stops ingesting Radithor.

17 Strontium is also in this column. This makes radioactive strontium-90, a fission byproduct with a half-life of 29 years, one of the major contamination concerns when a reactor core comes apart or a nuclear weapon is exploded above ground. It is a pure beta minus emitter, and it is just two disintegration hops away from stable zirconium-90. The interim isotope is yttrium-90, with a 64-hour half-life, emitting a beta minus and a gamma ray that is so weak it can be ignored. Although its danger potential is far less than radium, it is known to cause bone cancer.

18 James J. “Jimmy” or “Beau James” Walker was mayor of New York City at the time, and he at first refused to give up his radium water because it made him feel so good. Later that year Walker fled to Europe in fear of prosecution for several crimes while in office. Seldom mentioned is Byers’s girlfriend, who also perished of radium poisoning from the Radithor that Byers insisted that she drink.

19 This product was particularly popular in gunpowder factories, where liberal use of gas lighting was liable to end in disaster.

20 Bakerville could never grasp the theory of transmutation of elements due to radioactive decay and he announced the discovery of two new elements, “carolinium” and “berzelium,” while studying curious properties of radium. He was thus lauded in the New York Times in 1904 as “The Only American Who Ever Found a New Element.” America at the time was feeling as if Europe was running away with all the glory discoveries of science. The feeling was not unjustified. Carolinium and berzelium are not to be found in the current Periodic Table of the Elements, but carolinium shows up in H. G. Wells’s atomic bombs in his novel, The World Set Free. Wells left the second “i” out of carolinium as a poke at the Americans, who had accidentally left the second “i” out of aluminium.

21 In 1978 Argonne National Laboratory exhumed Peg Looney and measured the radiation content of her bones, finding 19,500 microcuries of radium — 228 remaining after 49 years. That is 1,000 times the maximum allowed level, and, given the 5.75-year half-life of the isotope, it had been a great deal of ingested radium. It’s as if she had been drinking the paint. She was reburied in a coffin made of lead.

22 A new factory renamed Luminous Process Co., opened six weeks later two blocks down the street. It was owned by the same guy Joseph Kelly who owned Radium Dial. It was finally closed in 1978 for continual breach of regulatory directives for the safe use of radioactive materials.

23 Tritium, the heaviest isotope of hydrogen, is still a radioactive substance, but it is not nearly as dangerous as radium. It has a half-life of 12.33 years and it emits a pathetically weak beta ray of only 0.0186 MeV After 123 years, a tritium sample is effectively all gone. It leaves the body as easily as it comes in, so the burden is slight.

24 Eventually, all the soluble uranium oxide will leach out of the ground by moving water and be washed to the sea, just like sodium chloride, or salt. There is presently an estimated 4,290 million metric tons of uranium in the salty oceans, enough to power the world with nuclear fission beyond the expected lifetime of mankind.

Chapter 2