Molecular bioaugmentation

The molecular bioaugmentation process utilizes genetic carriers such as transposons and plasmids to shuttle genetic information for toxic metal remediation into native species in the environment or species already adapted to the target environment. Several species of bacteria are capable of picking up and retaining circular fragments of DNA called Broad-Host — Range Plasmids which may be engineered to carry specific genes for the degradation of xenobiotic compounds and transformation of toxic metals (Weightman et al, 1984; Vincze and Bowra, 2006). The same process can be applied using genetically engineered linear DNA called transposons. Although studies have been conducted using these techniques in laboratory microcosms, the application in actual environments has not been attempted (Hill et al., 1994). In the future, it is foreseeable that these methods will find wide application for the new pollutant varieties that may be untreatable by conventional methods.