Outlook

The system is designed to achieve a solar fraction of 35 to 40 % of the total heat demand. This corresponds to a yearly reduction of 390 tons of CO2 emission. Compared to the original situation (without refurbishment) energy savings of 65 % will be achieved. Operation of the system is planned to begin in summer 2008.

On the one hand detailed investigations such as on the hydraulic behaviour of the store or concerning the influence of ground water on the thermal losses will be carried out. On the other hand an energetic analysis of the entire system including the performance of the heat pump will be conducted.

1st International Congress on Heating, Cooling, and Buildings^ 7th to 10th October, Lisbon — Portugal

Fig. 9: Cross section of the GW-TES, location of temperature sensors in the store and in the surrounding

soil

Acknowledgement

This project is supported by the German Federal Ministry for the Environment, Nature Conservation and

Nuclear Safety (BMU: Bundesministerium fur Umwelt, Naturschutz und Reaktorsicherheit), FKZ 0329607J.

The authors gratefully acknowledge this support and carry the full responsibility for the content of this paper.

References

[1] Pfeil M., "Realisierung eines solaren Nahwarmesystems mit Langzeitwarmespeicher in einem Schul — und Sportzentrum der 1960er Jahre”, 17. Symposium Thermische Solarenergie, 09.-11. Mai 2007, Kloster Banz, Bad Staffelstein, 2007.

[2] Riegger M., Mangold D., Planungsoptimierung und Bau des solaren Nahwarmesystems mit saisonalem Kies-Wasser-Warmespeicher in Eggenstein-Leopoldshafen, OTTI — 18. Symposium Thermische Solarenergie, Bad Staffelstein, 2008.

[3] Ochs F., State of the Art of Seasonal Thermal Energy Storage, Report, Institute of Thermodynamics and Thermal Engineering (ITW), Uni Stuttgart, Stuttgart, 2007.

[4] Ochs F., Heidemann W., Muller-Steinhagen H., Weiterentwicklung der Erdbecken — Warmespeichertechnologie, Forschungsbericht zum BMU-Vorhaben 0329607E (November 2002 bis Oktober 2007), Stuttgart, 2008.

[5] Ochs F., Heidemann W., Muller-Steinhagen H., Modelling and Measurement of the Effective Thermal Conductivity of the Insulation of Buried Heat Stores as a Function of Temperature and Moisture Content, Heat and Mass Transfer (2007), doi:10.1016/j. ijheatandmasstransfer.2007.05.005, 2007.

[6] Benner M., Bodmann M., Mangold D., NuBbicker J., Raab S., Schmidt T., Seiwald H., Solar unterstutzte Nahwarmeversorgung mit und ohne Langzeit-Warmespeicher, Forschungsbericht zum BMBF-Vorhaben, November 1998 bis Januar 2003, ISBN: 3-9805274-2-5, 2004.