Использование энергии океанских течений

Механическая мощность, которую можно извлечь из океанского течения, определяется тем же соотношением, которое используется для оценки этой величины в ветроэнергетике. Коэффициент преобра­зования энергии, зависящий от типа турбины, для выполнения при­ближенных расчетов можно принять равным 0,6 для свободно вра­щающегося рабочего колеса и 0,75 для того же колеса в насадке.

Строительство крупных ветряных турбин (диаметром до 200 м) практически невозможно из-за ограничений, связанных с прочно­стью материалов и массовыми характеристиками подобных устройств (http://renewables. ru/).

Для турбин, работающих в морской среде, массовые ограничения менее существенны из-за действия на элементы конструкций силы

Архимеда. Повышенная плотность воды позволяет, кроме того, умень­шить столь существенное для воздушных турбин воздействие вибра­ций, вызывающих усталостное разрушение материалов.

Важное достоинство океанских течений в качестве источников энер­гии по сравнению с ветровыми потоками — отсутствие резких измене­ний скорости (сравните с изменениями скорости при порывах ветра, при ураганах и т. п.). При достаточном заглублении в толщу воды тур­бины ОГЭС надежно защищены от волн и штормов на поверхности.

Для эффективного использования течений в энергетике необхо­димо, чтобы они обладали определенными характеристиками. В част­ности, требуются:

♦ достаточно высокие скорости потоков;

♦ устойчивость по скорости и направлению;

♦ удобная для строительства и обслуживания география дна и по­бережья.

Удаленность от побережья влечет удорожание транспортировки энергии и обслуживания этих станций, как, впрочем, и любых других. Большие глубины требуют увеличения затрат на сооружение и обслу­живание якорных систем, малые — создают помехи судоходству.

Именно географические факторы не позволяют сейчас говорить о строительстве ОГЭС в открытом океане, где несут свои воды наиболее мощные течения. При средних и малых глубинах, особенно в местах образования приливных течений, важную роль играет топография дна.

В качестве недостатков преобразователей энергии океанских тече­ний следует отметить необходимость создавать и обслуживать гигант­ские конструкции в морской воде, подверженность этих конструкций обрастанию и коррозии, трудности передачи энергии.

По аналогии с ВЭУ, существующие преобразователи энергии тече­ний можно условно* разделить на две группы. К первой целесообразно отнести те из них, в основу которых положен принцип преобразова­ния скоростного напора во вращательное движение турбин. Ко вто­рой, менее многочисленной, группе относят преобразователи, осно­ванные на других физических принципах (объемные насосы, упругие преобразователи и др.).

Для характеристики схем установки преобразователей можно выде­лить две основные схемы — сооружений, закрепляемых на морском дне, и сооружений, плавающих в толще воды и заякоренных к дну.

Родоначальником устройств первой группы по праву считают водяное колесо (рис. 5.14, а). В совершенствовании водяного колеса

в

г

Рис. 5,14, Эволюция водяного колеса: а — колесо-прототип; б—ленточное колесо на плавучем основании; в —ленточное колесо в толще потока; г—ленточное колесо со складными лопастями

image388

наблюдаются две основные тенденции. Одна — собственно улучшение показателей колеса (за счет оптимизации конструкции ферм, лопа­стей, механизмов передачи энергии, расположения по отношению к потоку, применения современных материалов и т. п.), другая — прин­ципиальное изменение представлений о колесе.

Ленточное колесо (рис. 5.14, б) оказывается более компактным, тре­бует меньше материалов, менее подвержено воздействию атмосферы. Подобное устройство может быть установлено в потоке на понтонах с таким расчетом, чтобы нижние лопасти входили в воду, а верхние оставались «сухими».

Эффективность преобразования скоростного напора повышается за счет того, что сразу несколько лопастей оказываются под воздей­ствием потока. Однако простое увеличение числа лопастей ленточного колеса не приведет к существенному увеличению момента на валах.

На базе ленточного колеса созданы устройства, полностью погру­жаемые в толщу потоков (рис. 5.14, в, г). Для таких устройств пред­лагается несколько способов уменьшения сопротивления движению ленты во время холостого хода, например:

♦ сооружение воздушной камеры над колесом;

♦ применение различных вариантов механизмов складывания ло­пастей.

Наибольшие надежды гидроэнергетики, занимающиеся разработ­кой преобразователей энергетики океанских течений, связывают с
агрегатами, с помощью которых могут быть получены значительные единичные мощности.

В качестве вариантов таких устройств рассматриваются рабо­чее колесо в виде свободного пропеллера, пропеллера в насадке, водяной аналог турбины Дарье, системы с управляемым крылом (рис. 5.15, а—в). Во всех этих конструкциях, так же как и у перспек­тивных ветряных турбин, главный преобразующий элемент — кры­ловой профиль, обтекание которого потоком создает гидродинамиче­скую силу, заставляющую турбины вращаться.

Наилучшими показателями обладает турбина, выполненная в виде рабочего колеса с горизонтальной осью в насадке. Это объясняется тем, что такое рабочее колесо меньше возмущает поток, не так сильно, как свободное, вовлекая жидкость во вращательное движение.

Насадок как бы отделяет возмущенную часть потока от невозму­щенной и в то же время обеспечивает некоторую концентрацию энер­гии. Форму насадка выбирают из такого расчета, чтобы обеспечить плавное безотрывное течение потока на подходе к турбине, сделать всю систему устойчивой на потоке, максимально снизить завихрен­ность потока на выходе из нее.

Рис. 5.15. Варианты схем перспективных турбин для ОГЭС: а — свободный ротор; б—ротор в насадке; в—ротор, устанавливаемый поперек потока

image391

Увеличения мощности одного такого агрегата можно достигнуть за счет удлинения крыла. По сравнению с ветряными преобразовате­лями океанские турбины в этом плане имеют преимущество: крити­ческий размер крыла, при котором в нем достигается предел прочно­сти материалов для такой турбины выше.

Но есть ограничения и в воде: при слишком большой длине крыла на смену изгибающим моментам, создаваемым под воздействием силы тяжести, приходят моменты, создаваемые силой давления потока.

Другое ограничение диаметра рабочего колеса связано с техноло­гическими трудностями при постройке и установке столь громоздких сооружений в океане. Специалисты сходятся во мнении, что диаметр турбин в насадках вряд ли превысит 200 м (по габаритам подобное сооружение напоминает крытый стадион на 20 тысяч зрителей). Накопленный к настоящему времени опыт строительства эксплуата­ционных платформ для добычи нефти и газа водоизмещением в сотни тысяч тонн показывает, что такие объекты могут быть созданы.

Объемный насос. Рассмотрим преобразователи энергии потоков, относящиеся по нашей классификации ко второй группе, и, прежде всего, устройства типа объемного насоса. На рис. 5.16 изображена одна из схем такого устройства, в основе которого — неподвижно закрепленное в потоке сопло Вентури.

В пережатом сечении сопла из-за увеличения скорости жидкости происходит падение статического давления, которое может быть использовано, например, для засасывания воздуха с поверхности.

В выходном сечении уже сжатый воздух вытесняется из потока в напорную камеру, откуда поступает в воздуховод турбины, соединенной с электрогенератором. При умеренных степенях пережатия потока работа такого устройства может быть описана с помощью уравнения Бернулли.

Производительность такого насоса зависит от расхода жидкости через сечение насоса и может быть доведена примерно до 20 % объем­ного расхода. Эжекционные свойства сильно зависят от способа ввода в поток подсасываемого газа.

image393

Рис. 5.1 б. Схема объемного насоса

Перечень различных вариантов преобразователей можно про­должить, но важно отметить, что со временем могут быть открыты как более эффективные способы преобразования энергии потоков в океане, так и новые гидродинамические явления, которые потребуют принципиально новых разработок.

Уже сейчас можно обратить внимание:

♦ на энергию океанских противотечений, скрытых толщей поверх­ностных вод и часто лишь достаточно тонкими пограничными слоями отделенных от поверхностных;

♦ на энергию различных вихрей, возникающих в открытом океане под воздействием метеорологических возмущений и крупномас­штабной гидродинамической неустойчивости в океанах.

Известны даже постоянно действующие вихри. Один из них нахо­дится в 400 км от Огасавары (Япония) в Тихом океане. Он представ­ляет собой водоворот диаметром около 200 км, поднимающийся с глубины 3 км почти до самой поверхности. Примечательна одна из особенностей водоворота — примерно через каждые 100 дней он изменяет направление вращения на обратное. По оценкам японских ученых удельные энергетические характеристики этого водоворота значительно выше, чем у ряда океанских течений.