Самодельная солнечная батарея на 50 Вт

Эту солнечную батарею создал своими руками один из авторов книги, Германович Виталий, поэтому в этом разделе повествование ведется от первого лица (прим, редактора). Перейдем к его рассказу.

В свое время, начитавшись в интернете разных статей о самодель­ных солнечных батареях, я тоже увлекся идеей собрать что-нибудь своими руками. Последней каплей, подтолкнувшей меня к реальным действиям, стала статья американца Майкла Дэвиса о сборке солнеч­ной батареи из элементов, купленных на аукционе eBay.

Первым делом, я купил на аукционе сотню солнечных элементов, точно таких, которые Майкл описывал в своей статье. Эти элементы оказались еще и самыми дешевыми и доступными.

Вдобавок мне пришлось у другого продавца заказать специальный карандашный флюс, припой, а также плоские соединительные прово­дники.

Получив все посылки, я первым делом стал экспериментировать — сделал тестовую батарею из обломков, образовавшихся при пересылке.

Далее пошел длительный и утомительный процесс припаива — ния проводников к элементам. Эта работа заняла много времени. Несколько раз я делал перерывы на неделю-другую, а то пайка про­водов уже начинала сниться по ночам.

Ё

Совет.

Если соберетесь пойти по моим стопам и собрать свою солнечную батарею, послушайте моего совета — покупайте элементы с уже припаянными проводниками! Сбережете время и нервы.

В процессе пайки, я увидел на YouTube, как с такими же элементами мучаются другие самоделыцики. Поэтому решал отснять парочку видеороликов, чтобы поделиться своим опытом. Вот так выглядит процесс пайки проводников, если вы уже «набили руку».

В

Примечание.

Ролики доступны на http://germarator. ru/post/148.

Припой без содержания свинца для пайки солнечных батарей, кото­рый сейчас активно продается на eBay, я использовать не рекомен­дую. Такое ощущение, что он имеет высокую температуру плавления. В результате, при использовании маломощного паяльника паять эле­менты очень трудно. Элемент при пайке работает, как радиатор — вы касаетесь его паяльником, и припой моментально затвердевает, а рас­плавить его паяльник нормально не может — элемент отводит тепло в воздух. Именно поэтому все американцы рекомендуют использовать мощный паяльник на 60—90 Вт.

Я же, как видите, обошелся 25-ти ваттным, т. к. использовал обыч­ный отечественный припой ПОС-61. У этого припоя низкая темпера­тура плавления и мощности паяльника вполне хватает, чтобы поддер­живать его в расплавленном состоянии пока вы ведете пайку.

В

Совет.

Припой берите в виде тонкой проволоки (1—Змм). С прутковым припоем работать неудобно— для маломощного паяльника его приходится резать на кусочки.

На http://germarator. ru/post/148 показано, как определить, какой длинны нам нужны отрезки соединительных проводов. Просто я в сети постоянно встречал ошибочный совет взять удвоенную ширину элемента и прибавить ширину зазора между элементами. Эти совет­чики не учитывают, что на обратной стороне провод припаивается к контактной площадке, которая примерно на 1,5 см отстоит от края.

На каждый элемент надо 2 провода, сэкономив 1,5 см на каждом мы получим около 3 метров (!!!) экономии провода на сотне элементов.

Но экономия в этом вопросе — не главное. Просто впоследствии, когда вы будете объединять элементы в батарею, вы все-равно отре­жете лишние сантиметры провода, чтобы он не болтался и не приво­дил к короткому замыканию, касаясь соседних проводов. Так зачем нам потом делать лишнюю работу?

Следующий совет касается того, как именно из длинного про­вода нарезать отрезки одинаковой расчетной длинны. Мне нужны были отрезки по 155 мм. Я взял две полоски картона толщиной 3 мм и шириной примерно 71—72 мм, намотал на эту катушку провод. Каждый виток, получился примерно 155 мм. Это гораздо проще, чем измерять линейкой каждый отрезок.

Ну ладно… Провода к элементам припаяны, идем дальше.

Первым делом надо определиться с материалами, которые мы будем использовать для нашей солнечной батареи.

В своей статье Майкл Дэвис рекомендует использовать дерево и фанеру. Безусловно, это материалы доступны и легко обрабатываются. Но они также очень сильно подвержены воздействию окружающей среды. Как вы не прокрашивайте дерево, оно рано или поздно у вас облезет и начнет гнить. Поэтому я искал материал, который не будет бояться условий окружающей среды.

Стекло — хороший выбор. Материал прочный, его можно резать и клеить, а при наличии сноровки — даже сверлить. Если использовать в качестве фронтального покрытия солнечной батареи специальное стекло или даже обычное, но высокой чистоты, то можно уменьшить потери и повысить итоговую выходную мощность. Но со стеклом есть одна проблема — оно хрупкое и бьется. Раз в несколько лет у нас ста­бильно случается град. Поэтому стекло может не выдержать, и тогда работа нашей батареи закончится — осколки разбившегося стекла повредят хрупкие солнечные элементы.

В итоге, выбирая материал который не проводит электричество, обладает эластичностью, легко обрабатывается, не гниет, достаточно прочный и при этом легкодоступен, я остановил свой выбор на обыч­ном оргстекле.

Фронтальное покрытие — тонкое оргстекло 2 мм, подложка — тол­стое 4 мм. В качестве подложки можно использовать текстолит, но мне не удалось найти в продаже листы подходящей толщины и размера.

В промышленных солнечных батареях применяют герметизацию, стекло спекается со специальной пленкой, что придает ему дополни­тельную прочность. Фактически, промышленная СБ представляет собой триплекс. Сильный град, конечно, может повредить батарею, но разлета осколков стекла не будет. К сожалению, такой метод герме­тизации в домашних условиях не доступен.

Еще я рассматривал различные варианты герметизации по техно­логии пленочного и заливного триплекса (стекольщики знают), но все это оказалось дорого и нереализуемо в домашних условиях.

Американцы советуют для герметизации использовать прозрачный эпоксидный кампаунд Sylgard 184. Купить его можно на том же eBay по 50 баксов за банку. Проблема только в том, что этой банки хватит лишь на заливку одной солнечной батареи. Продавец пишет, что хва­тит на две — не верьте.

Короче, я решил совсем отказаться от идеи герметизации элемен­тов. Это конечно ведет к уменьшению мощности, но зато сильно упро­щает конструкцию.

Для того, чтобы в солнечной батарее элементы шли ровными рядами я сделал простую сборочную панель из фанеры.

Лементы имеют размер 81×150 мм, на зазоры я оставил по 5 мм, поэтому на фанере нарисовал сетку с ячейками 86×155 мм. Чтобы при сборке проще было укладывать элементы, и они не съезжали, я приклеил обычные пластиковые крестики, применяемые при укладке керамической плитки.

Немного напишу о размерах. Я исходил из имеющихся материа­лов. Оргстекло мне удалось купить размером 76×68 см. В такой раз­мер помещается 4 цепочки по 8 элементов — всего 32 шт. Вообще-то, для сборки солнечной батареи на 12 В рекомендуется использовать 36 элементов (4×9).

image272Примечание.

Однако, учитывая, что я все-равно буду собирать цепочку СБ и использовать «умный» контроллер, я решил немного пожертво­вать напряжением и мощностью. Зато изделие получилось из лег­кодоступных материалов.

32 солнечных элемента позволят получить батарею мощностью примерно 50 Вт. Каждый элемент имеет пиковую мощность порядка
1,75 Вт (в сумме 56 Вт), но часть мощности потеряется из-за переот — ражения на стекле и отсутствия подбора элементов по параметрам.

ШШ Совет. ini

пи Также отмечу, что количество цепочек элементов в солнечной батарее желательно делать четным, чтобы полюса оказались с одной стороны, и их можно было компактно вывести в одну ком­мутационную коробку. Если сделать, например, три цепочки, то полюса батареи у вас окажутся по диагонали друг к другу.

Продолжаем сборку: устанавливаем получившуюся сборочную панель на горизонтальную поверхность и укладываем солнечные эле­менты.

После этого надо опять немного поработать паяльником. У меня на пайку ушло 2 вечера, часа по 2 каждый день. Цепочки между собой соединяются при помощи специальной шины — более широкого пло­ского провода. Этими же шинами делается вывод полюсов батареи наружу. Помимо двух полюсов я решил сделать еще и вывод «сред­ней точки». Чуть позже объясню зачем. Вывод наружу делается через отверстия в подложке.

Для приклеивания элементов к подложке я решил использовать най­денную в магазине монтажную ленту. Она из какого-то пористого поли­мерного материала, мягкая и имеет с двух сторон клейкий слой. Держит очень крепко, предназначена для работы на открытом воздухе.

Нарезаем ленту на небольшие кусочки и приклеиваем их ко всем элементам ровно по центру. Пайка на контактных площадках у меня получилась выпуклой, поэтому я клеил ленту в два слоя.

Надо чтобы клейкая площадка возвышалась над контактами и над пластиковыми «крестиками» сборочного стола. Потом, когда мы на элементы приложим подложку и прижмем ее, клейкие площадки при­клеятся к ней. И каждый элемент окажется надежно закрепленным на подложке. После приклеивания элементов, поднимаем подложку (с ней поднимаются и все элементы), переворачиваем и видим вот такую красоту.

Впоследствии я при помощи кусочков монтажной ленты еще и шины закрепил на подложке, чтобы не болтались.

Теперь как-то надо закрепить фронтальное стекло. Для этих целей я использовал ту же монтажную ленту, но только более широкую. Цвет значения не имеет, у меня оказалась светлая.

Борта и клейкие площадки для элементов я тоже делал из двух слоев ленты, чтобы они получились примерно такой же высоты.

Наклеив второй слой ленты на борта, я оставил сверху защитную бумажную пленку по всей длине ленты. Дело в том, что к оргстеклу она приклеивается очень быстро и прочно, если накладывать фрон­тальное стекло прямо на клейки слой, его не получится выложить ровно с подложкой — обязательно будет какой-то перекос.

В решении этой проблемы помогла хитрость, подсмотренная у сте­кольщиков, занимающихся изготовлением заливного триплекса. На каждом бортике мы отрываем бумажный слой только на концах и загибаем его концом наружу.

После этого накладываем фронтальное стекло и выравниваем его края с краями подложки. А дальше просто вытягиваем защитную бумажную пленку, слегка приподнимая край стекла. После опускания оно моментально приклеивается. Стык получается ровный и краси­вый.

Я пока оставил на оргстекле защитную пленку. Планирую оста­вить ее до самого последнего момента — до установки, чтобы свести

к минимуму количество возмож­ных царапин при хранении и транспортировке.

Вот как выглядит моя солнеч­ная батарея на текущий момент. Вид спереди (рис. 3.12).

Прозрачная подложка позво­ляет визуально контролировать все контакты, а в случае появле­ния трещин в элементах, их будет видно на просвет.

Рис. 3.12. Вид солнечной батареи спереди В верхней части С обратной

стороны батареи прикреплена клеммная планка на 3 контакта. В нее выведены полюса солнечной батареи и «средняя точка».

Зачем, спрашивается, нужен этот третий контакт? В принципе, можно обойтись и без него. Но с ним можно сделать две хитрости:

♦ в случае необходимости, можно будет включить в работу только половину солнечной батареи и получить 6 В, вместо 12 В;

♦ третий контакт позволяет поставить на каждую половину бата­реи отдельный шунтирующий диод.

Зачем нужен шунтирующий диод? Если кратко, то он не позволяет элементам батареи, на которые падает тень, расходовать мощность, генерируемую остальными элементами, на которые светит солнце. В идеале, шунтирующий диод должен стоять на каждом элементе, но на практике это делают редко. Обычно ставят шунтирующий диод на всю батарею. Хотя еще чаще его вообще не ставят, предполагая, что бата­рея будет стоять там, где на нее тень упасть не может. Ну а я решил поставить шунтирующие диоды на каждую половину батареи — если одна половина попадет в тень, вторая будет работать.

А теперь о том, что еще осталось сделать. Во-первых, рамку для батареи. Для этого я уже подыскал алюминиевый профиль «уголок». Надо выпилить 4 отрезка на каждую сторону солнечной батареи: 2 по 76 см и 2 по 68 см. Спилы делаются под углом 45 градусов, чтобы потом они ровно стыковались друг с другом.

■■ Совет.

|Н| Кстати, можно также заказать рамку в багетной мастерской. У них есть толстый алюминиевый профиль, из которого рамы для картин делают. Там же дадут специальные прижимные пружины, уголки и «ушки».

Но если хочется сделать самому — используйте просто алюминие­вый уголок. Ушки можно сделать из него же, а закрепить это все вин­тами, думаю — не проблема.

Теперь «подобьем бабки». Для удобства, все цены буду приводить в долларах. Элементы куплены на eBay, в посылке было 110 штук. Цена 199$. Однако, сверху пришлось оплатить доставку — 40$ и таможен­ную пошлину — 60$. Итого около 300$ за сотню элементов (несколько сломались). На батарею пошло 32 элемента, что в деньгах — 96$.

Там же были куплены шины, карандашный флюс, припой и диоды Шоттки. Все вместе с доставкой от разных продавцов в пересчете на одну батарею обошлось примерно в 30$.

Оргстекло — примерно 20$ за два листа.

Монтажная лента: половина катушки шириной 9-мм и полторы катушки шириной 2 см — примерно 5$. Алюминиевый профиль — 5$ за две «палки» по 2 метра.

Канифоль, отечественный припой, клеммная планка, винты/ гайки — накинем еще 3—4$.

Итого у меня получается примерно 160$ на одну солнечную батарею.

Сейчас, покупая элементы небольшими партиями (чтобы не пла­тить таможенную пошлину) и с уже припаянными проводами и шинами в комплекте, я думаю, что можно уложиться и в меньшую сумму. Но даже 160 баксов за солнечную батарею в 50 ватт — это неплохой результат — солнечная батарея промышленного производ­ства мощностью 50 Вт стоит до 350$.

Не надо только забывать, что для сборки собственной солнечной батареи нужно ВРЕМЯ!!!