Typical specifications are summarized in Table 2 2 Since many different types are available, the values in the table have been entered as ranges
Tables 2 3 through 2 7 indicate the variety of neutron and gamma sensors available from one manufacturer The sensors listed are limited to those discussed in this chapter Commercial in-core neutron sensors are described in Chap 3
Table 2 2—Typical Specifications for Commercial Out of-Core Gas Ionization Detectors
|
Gamma
chambers
|
Ionization
chambers
|
Compensated
ionization
chambers
|
Fission
counters
|
Proportional
counters
|
Sensitivity amp/(R/hr) amp/nv* (counts/sec)/nv*
|
10 1 3 to 10 9
|
10 12 to 10 1 0 10 1 4 to 5 x 10 1 3
|
— v
о о
^Ч т-Н 0 0
о о
^Ч г*Ч
|
10 4 to 2
|
3 to 40
|
Operating voltage
|
100 to 1500
|
200 to 1200
|
200 to 1500
|
200 to 1200
|
800 to 5000
|
Max temp °I
|
175 to 600
|
175 to 850
|
175 to 750
|
250 to 850
|
175 to 500
|
Diameter in
|
1 to 3
|
1 to 3 5
|
3 to 4
|
0 1 to 3
|
1 to 6
|
Length in
|
12 to 16
|
10 to 16
|
8 to 25
|
5 to 300
|
10 to 40
|
•Where nv is measured in neutrons cm 2 sec 1
|
Table 2.3—Uncompensated Ionization Chambers*
Nominal dimensions
Neutron-
sensitive
material
|
Thermal-
neutron
sensitivity,
amp/nvt
|
Gamma
sensitivity,
amp/(R/hr)
|
Max. oper. thermal — neutron flux, nvt
|
Typical oper. voltage, volts (d-c)
|
Min
signal
resistance,
ohms
|
Signal
capacitance,
pF
|
Max.
oper.
temp.,
°F
|
Detector insulator І
|
Length
Sensitive,
in.
|
Overall,
in.
|
Detector
O. D.,
in.
|
2 3 5 u
|
1 4 х 10 1 3
|
4 2 x 10’1 1
|
1 4 X 10’0
|
300-1000
|
109
|
150
|
300
|
ai2o3
|
6
|
n1/,
|
2
|
1 °B
|
4 4 х КГ1 4
|
4 5 x 10’1 1
|
5 0 x 10′ 0
|
200-1000
|
10′ 1
|
170
|
300
|
ai2o3
|
7
|
135/,
|
3
|
IJSU
|
2 6 х 1ЄГ1 4
|
3 0 x10 1 1
|
8 5 x 10‘ 0
|
300-1000
|
10’
|
140
|
300
|
ai2o3
|
6
|
11 y2
|
2
|
”SU
|
3 0 х10 1 4
|
4 2 x10 1 1
|
6 0 X 10′ 0
|
300-1000
|
109
|
150
|
300
|
ai2o3
|
6
|
11‘/2
|
2
|
2 3 5 u
|
1 4 х10 1 4
|
42×10"
|
1 4 x 10′ 1
|
300-1000
|
109
|
150
|
300
|
ai2o3
|
6
|
u1/.
|
2
|
1 °B
|
4 4 х10 1 4
|
4 5 x 10" 1
|
5 0 x 10‘ 0
|
200-1000
|
10′ 0
|
170
|
575
|
ai2o3
|
7
|
|
3
|
2 3 3 и
|
40 х 10 1 4
|
40 x 10" 1
|
2 7 X 10′ 0
|
200 1000
|
10"
|
160
|
575
|
ai2o3
|
7
|
135/s
|
3
|
2 3 5 u
|
1 4 х 10" 3
|
4 2 x 10 1 ‘
|
1 4 X 10’0
|
300-1000
|
109
|
150
|
300
|
ai2o3
|
6
|
11’/,
|
2
|
10 в
|
4 4 х10 1 4
|
4 5 x 10" ‘
|
50×10’°
|
200-1000
|
10‘ 1
|
170
|
300
|
ai2o3
|
7
|
“7.
|
3
|
10 в
|
1 5 х10 14
|
3 5 x 10 1 2
|
5 0 x 10 1 0
|
300 800
|
10′ 3
|
110
|
175
|
Rex
|
5‘/2
|
10’/2
|
3‘/2
|
2 3 5 U
|
2 8 х 10" 4
|
40 x 10" ‘
|
5 0 x 10′ 0
|
300 1000
|
109
|
170
|
500
|
ai2o3
|
7
|
135/8
|
3
|
2 3 5 и
|
5 1 х 10 1 4
|
5 0 x 10" 1
|
2 7 x 10’0
|
300-1000
|
107
|
283
|
850
|
ai2o3
|
10
|
157.
|
17.
|
2 3 5 и
|
40 х 10 1 4
|
4 0 x 10 1 1
|
2 7 x 10’0
|
300-1000
|
107
|
150
|
700
|
ai2o3
|
7
|
135/8
|
3
|
2 3 5 и
|
1 4 х 10 1 3
|
4 2×10»
|
1 4 X 10‘ 0
|
300-1000
|
10*
|
1000
|
390
|
ai2o3
|
6
|
276
|
3
|
. ов
|
1 2 х 10 1 4
|
3 0 x 10 1 2
|
1 0 x 10’0
|
200 1000
|
10′ 2
|
1880
|
175
|
ai2o3
|
10
|
15/s
|
1
|
10 в
|
3 0 х 1 O’1 3
|
1 8 x 10" 0
|
2 5 x 10′ 0
|
300-1100
|
10′ 3
|
1850
|
175
|
Rex
|
108
|
1133/8
|
3‘/2
|
*Courtesy Westwghouse Electric Corp.
+Nv is expressed in neutrons cm 2 sec 1
tAl2 Oj is a high alumina content ceramic Rex is a cross linked styrene
|
|
|
*Courtesy Westinghouse Electric Corp.
+ Nv is expressed in neutrons cm 2 sec 1
$a2o3 is a high alumina-content ceramic, Rex is a cross-linked styrene
|
|
|
Table 2.4—Compensated Ionization Chambers*
Thermal-
|
Uncomp.
|
Max. oper.
|
Typical
|
Min.
|
|
Max.
|
|
Nominal dimensions
|
|
|
Length
Sensitive, Overall,
|
|
neutron
sensitivity,
|
gamma
sensitivity,
|
thermal-
neutron
|
oper.
voltage,
|
signal
resistance,
|
Signal
capacitance,
|
oper.
temp.,
|
Insulation type$
|
Detector
O. D.,
|
amp/nvt
|
amp/(R/hr)
|
flux, nv+
|
volts (d-c)
|
ohms
|
pF
|
"F
|
Detector Conn.
|
in. in.
|
in.
|
|
|
4 4 x 10 1 4
|
2 3 x10 1 1
|
2 5 xlO10
|
300-1000
|
10’4
|
275
|
175
|
Rex
|
Rex
|
14
|
2 37,
|
3’/.
|
4 4 x 10" 4
|
2 3×10"
|
2 5 x 10′ 0
|
300-1000
|
10′ 4
|
275
|
175
|
Rex
|
Rex
|
14
|
24’/я
|
з1/.
|
4 4 x 10 1 4
|
2 5 x 10Г1 1
|
2 5 x 1010
|
300-1000
|
10′ 2
|
315
|
575
|
ai2o3
|
ai2o3
|
14
|
2il
|
3’/.
|
4 4 x 10’4
|
2 3 x 10" 1
|
2 5 x 10′ 0
|
300-1000
|
10′ 3
|
275
|
175
|
Rex
|
Rex
|
14
|
2 Я
|
ЗУ,
|
1 5 x 10Г14
|
3 5 x 10 1 2
|
2 5 x 10′ 0
|
300-800
|
10′ 3
|
130
|
175
|
Rex
|
Rex
|
5’/,
|
ю У,
|
ЗУ,
|
1 5 x10 1 4
|
3 5 x 10" 2
|
25×10’"
|
300-800
|
10′ 3
|
135
|
175
|
Rex
|
Rex
|
5’/2
|
ю ■/,
|
з1/,
|
4 4 x10’4
|
2 3×10"
|
25×10’"
|
300-1000
|
10′ 3
|
290
|
400
|
ai2o3
|
ai2o3
|
14
|
!9’/8
|
з1/.
|
1 0 x 10 1 5
|
1 5 x10 1 3
|
1 5 x 10‘2
|
25-250
|
101 1
|
155
|
660
|
ai2o3
|
ai2o3
|
2У16
|
75/>6
|
3
|
4 4 x10 ’ 4
|
2 3 x 10 1 1
|
2 5×10"
|
300-1500
|
10′ 3
|
290
|
300
|
ai2o3
|
ai2o3
|
14
|
19’/,
|
ЗУ.
|
|
|
Table 2.5—Fission Counters’
Thermal — neutron sensitivity, (counts/sec)nv +
|
Max. oper thermal — neutron flux, nv +
|
Typical oper. voltage, volts (d-c)
|
Min.
signal
resistance,
ohms
|
Signal
capacitance,
pF
|
Max.
oper.
temp.,
°F
|
Insulator type;;: Detector Conn
|
Nominal dimensions
|
Length
|
Detector
O. D.,
in
|
Sensitive,
in.
|
Overall,
in
|
0 7
|
14x10s
|
200-800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
ny
|
2
|
0 2
|
5 0 x 105
|
200-800
|
10“
|
140
|
300
|
ai2o3
|
ai2o3
|
6
|
11 у
|
2
|
0 14
|
7 0 x 10s
|
200-800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
ny
|
2
|
1 25 x 10 3
|
10×10*
|
250 500
|
109
|
55
|
575
|
ai2o3
|
Rex
|
%
|
5 35/1 6
|
0 210
|
0 52
|
2 0 x 10s
|
200-800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
11У
|
2
|
0 07
|
1 4 x 10‘
|
200-800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
11У
|
2
|
0 7
|
1 4 x 10s
|
200-800
|
109
|
160
|
575
|
ai2o3
|
ai2o3
|
7
|
13s/8
|
3
|
0 7
|
1 4x10s
|
200 800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
ny
|
2
|
0 7
|
1 4 x 105
|
200 800
|
107
|
150
|
700
|
Al2 O3
|
ai2o3
|
6
|
11У
|
2
|
0 1
|
1 0 x 10"
|
300 800
|
109
|
30
|
575
|
ai2o3
|
ai2o3
|
4%
|
?7.
|
1
|
0 14
|
7 0 x 10s
|
200 800
|
109
|
170
|
500
|
ai2o3
|
ai2o3
|
7
|
13 %
|
3
|
0 5
|
2 0 x 10 s
|
200 800
|
10 7
|
283
|
850
|
ai2o3
|
ai2o3
|
10
|
15 7.
|
1%
|
0 25
|
4 0 x 105
|
200 800
|
107
|
150
|
700
|
ai2o3
|
ai2o3
|
7
|
3 3 %
|
3
|
5 x 10 3
|
2 0 X 108
|
350 650
|
1010
|
40
|
750
|
ai2o3
|
|
1
|
5
|
2
|
0 7
|
14 x10s
|
75
|
109
|
160
|
500
|
ai2o3
|
—
|
7
|
14
|
3
|
0 35
|
2 8 x 10s
|
200 800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
ny
|
2
|
§
|
lOx 10′
|
200 800
|
109
|
150
|
300
|
ai2o3
|
ai2o3
|
6
|
11У
|
2
|
0 7
|
14×10’
|
200-800
|
108
|
1000
|
390
|
ai2o3
|
ai2 o3
|
6
|
276
|
3
|
2 2 x 10 4
|
5 0 x 108
|
250 800
|
5 x 108
|
2
|
500
|
alo3
|
—
|
5/1(,
|
1’/,.
|
0 220
|
1 5 x 10 3
|
1 0 x 108
|
300- 500
|
108
|
260
|
500
|
ai2o3
|
A1,03
|
7,
|
243
|
0 210
|
1 x 10-5
|
10×10”
|
100-200
|
109
|
125
|
250
|
I h
|
Rex
|
■Уза
|
6з5/,6
|
0 090
|
0 18
|
6 0 x 10s
|
200-800
|
109
|
45
|
575
|
ai2o,
|
ai2o3
|
«7.
|
12
|
1
|
0 5
|
2 0 x 10s
|
200-800
|
108
|
150
|
390
|
a 12 0 3
|
ai2o3
|
6
|
ny
|
2
|
0 35
|
3 0 x 10s
|
200 800
|
108
|
90
|
390
|
ai2o3
|
ai2o3
|
3
|
"У
|
2
|
*Courtesy Westtnghouse Electric Corp.
+ Nv is expressed in neutrons cm 2 sec 1
$A1203 is a high alumina-content ceramic Rex is a cross linked stvrene
§Sensitive material is 238 U Sensitivity to ^ 1 5 MeV neutrons = 10 3 to thermal neutrons = 1 4 x 10 4
|
|
|
|
‘Courtesy Westinghouse Electric Corp.
+ Nv is expressed in neutrons cm"2 sec 1
*A1303 is a high-alumina-content ceramic, Rex is a cross linked styrene §Oval case 7l s/ in and 3^ 6 in
Table 2.7—Gamma Chambers*
Nominal dimensions
Gamma
sensitivity,
amp/(R/hr)
|
Max oper. gamma flux, R/hr
|
Typical oper. voltage, volts (d-c)
|
Min
signal
resistance,
ohms
|
Signal
capacitance,
pF
|
Max.
oper.
temp.,
°F
|
Detector insulator t
|
Length
|
Detector
O. D.,
in
|
Sensitive,
in.
|
Overall,
in.
|
3 0 x10 1 2
|
4 x 10s
|
200-1000
|
101 2
|
1880
|
175
|
ai2o3
|
10
|
15‘/8
|
і
|
10×10“
|
5 x 107
|
100 1200
|
10′ 3
|
125
|
575
|
ai2o3
|
8
|
123/8
|
2
|
1 0 x 10 1 0
|
3 x 107
|
100-1200
|
10‘ 3
|
125
|
575
|
Ai203
|
8
|
123/8
|
2
|
2 5 x 10 9
|
2 x 103
|
200-1500
|
10‘ 1
|
170
|
300
|
ai2o3
|
7
|
13?8
|
3
|
|
REFERENCES
1 S Glasstone and M C Edlund, 7be Elements of Nuclear Reactor Theory, D Van Nostrand Company, Inc, Princeton, N J, 1955.
2 Reactor Physics Constants, USAEC Report ANL-5800 (2nd Rev ), Argonne National Laboratory, Superintendent of Documents, U S Government Printing Office, Washington, D C, 1963
3 J A Crowther, Ions, Electrons and Ionizing Radiations, 8th ed, Edward Arnold, Ltd, London, 1949
4 D R Bates (Ed ), Atomic and Molecular Processes, Academic Press, Inc, New York, 1962
5 В В Rossi and H H Staub, Ionization Chambers and Counters, Experimental Techniques, McGraw-Hill Book Company, Inc, New York, 1949
6 USA Standard Glossary of Terms in Nuclear Science and Technology, USAS N 1 1—1967, United States of America Standards Institute, New York 1967
7 W Abson and F Wade, Nuclear Reactor Control Ionization
Chambers, Proc Inst llec Eng (London), 103B(22) 590
(1956)
8 M L Awcock, U2 3 5 Coated Ionization Chamber, Type 1Z-400, Canadian Report AECL-805, pp 44-45, August 1959
9 L Colli and V Facchini, Drift Velocity of Electrons m Argon, Rev Set Instrum, 23: 39 (1952)
10 V Facchini and A Malvicmi, Argon—Nitrogen Fillings Make Ion Chambers Insensitive to 02 Contamination, Nucleonics, 13(4) 36 (1955)
11 W M Trenholme, Effects of Reactor Exposure on Boron Lined and BF3 Proportional Counters,//?/[3] Trans Nucl Sci, NS-6(4)
1 (1959)
12 J L Kaufman, High Current Saturation Characteristics of the ORNL Compensated Ionization Chamber (Q1045), USAEC Report CF-60 5-104, Oak Ridge National Laboratory, May 25, 1960
13 D P Roux, Parallel-Plate Multisection Ionization Chambers for High-Performance Reactors, USAEC Report ORNL 3929, Oak Ridge National Laboratory, April 1966
14 E В Hubbard, Compensated Ion Chamber, in Proceedings of the 1959 Biannual National Nuclear Instrumentation Sym posium, Idaho Falls, Idaho, June 24—26, 1959, ISA Vol 2, pp 99 106, Instrument Society of America
15 W H Todt, A Gamma Compensated Neutron Ionization Chamber Detector for the NERVA Reactor, ILLI (Inst Elec Electron Eng) Trans Nucl Sci, NS-15(1) 9 1 (1968)
16 H S McCreary, Jr, and R T Bayard, A Neutron Sensitive Ionization Chamber with Electrically Adjusted Gamma Com pensation, Rev Set Instrum, 25. 161 (1954)
17 W Baer and R T Bayard, A High Sensitivity Fission Counter, Rev Set Instrum, 24: 138 (1953)
18 W Abson, P G Salmon, and S Pyrah, The Design, Performance and Use of Fission Counters, Proc Inst Elec Eng (London) 105B(22) 349 (1958)
9 S A Korff, Proportional Counters, Nucleonics, 6(6) 5 (1950)
0 S A Korff, Proportional Counters, II, Nucleonics, 7(5) 46
(1950)
21 W Abson, P G Salmon, and S Pyrah, Boron Trifluoride Proportional Counters, Proc Inst Elec Eng (London), 105B(22) 357(1958)
22 N M Gralenski and J E Schroeder, Description and Analysis of a Sensitive BF3 Filled Uncompensated Ionization Chamber USAEC Report DC-60 11 73, General Electric Company, Nov 10, 1960
23 R В Mendell and S A Korff, Plateau Slopes and Pulse Characteristics of Large, High-Pressure BF3 Counters, Rev Set Instrum, 30: 442 (1959)
24 J W Htlborn, Self Powered Neutron Detectors for Reactor Flux Monitoring, Nucleonics, 22(2) 64(1964)
25 J Moteff, Neutron Flux and Spectrum Measurement with Radioactivants, Nucleonics, 20(12) 56 (1962)
26 W C Judd, Continuous Flux Monitoring of a High-Flux Facility with A41, in Reactor Technology Report No 14, USAEC Report KAPL-2000-11, p II1-1, Knolls Atomic Power Labora tory,1960
27 V Adjacic, M Kurepa, and В Lalovic, Semiconductor Measures Fluxes in Operating Core, Nucleonics, 20(2) 47 (1962)
28 R Babcock, Radiation Damage in SiC, IELE Trans Nucl Set, NS-12(6) 43-47 (1965)
29 R V Babcock and H C Chang, SiC Neutron Detectors for High Temperature Operation, in Neutron Dosimetry Symposium Proceedings, Harwell, Eng, December 1962, pp 613 622, Inter national Atomic Energy Agency, Vienna, 1963 (STI/PUB/69)
30 R R Ferber and G N Hamilton, Silicon Carbide High Temperature Neutron Detectors for Reactor Instrumentation, Nucl Appl, 2. June 1966