TYPICAL SPECIFICATIONS OF COMMERCIAL GAS IONIZATION SENSORS

Typical specifications are summarized in Table 2 2 Since many different types are available, the values in the table have been entered as ranges

Tables 2 3 through 2 7 indicate the variety of neutron and gamma sensors available from one manufacturer The sensors listed are limited to those discussed in this chapter Commercial in-core neutron sensors are described in Chap 3

image062

Table 2 2—Typical Specifications for Commercial Out of-Core Gas Ionization Detectors

Gamma

chambers

Ionization

chambers

Compensated

ionization

chambers

Fission

counters

Proportional

counters

Sensitivity amp/(R/hr) amp/nv* (counts/sec)/nv*

10 1 3 to 10 9

10 12 to 10 1 0 10 1 4 to 5 x 10 1 3

— v

о о

^Ч т-Н 0 0

о о

^Ч г*Ч

10 4 to 2

3 to 40

Operating voltage

100 to 1500

200 to 1200

200 to 1500

200 to 1200

800 to 5000

Max temp °I

175 to 600

175 to 850

175 to 750

250 to 850

175 to 500

Diameter in

1 to 3

1 to 3 5

3 to 4

0 1 to 3

1 to 6

Length in

12 to 16

10 to 16

8 to 25

5 to 300

10 to 40

•Where nv is measured in neutrons cm 2 sec 1

image40

Table 2.3—Uncompensated Ionization Chambers*

Nominal dimensions

Neutron-

sensitive

material

Thermal-

neutron

sensitivity,

amp/nvt

Gamma

sensitivity,

amp/(R/hr)

Max. oper. thermal — neutron flux, nvt

Typical oper. voltage, volts (d-c)

Min

signal

resistance,

ohms

Signal

capacitance,

pF

Max.

oper.

temp.,

°F

Detector insulator І

Length

Sensitive,

in.

Overall,

in.

Detector

O. D.,

in.

2 3 5 u

1 4 х 10 1 3

4 2 x 10’1 1

1 4 X 10’0

300-1000

109

150

300

ai2o3

6

n1/,

2

1 °B

4 4 х КГ1 4

4 5 x 10’1 1

5 0 x 10′ 0

200-1000

10′ 1

170

300

ai2o3

7

135/,

3

IJSU

2 6 х 1ЄГ1 4

3 0 x10 1 1

8 5 x 10‘ 0

300-1000

10’

140

300

ai2o3

6

11 y2

2

”SU

3 0 х10 1 4

4 2 x10 1 1

6 0 X 10′ 0

300-1000

109

150

300

ai2o3

6

11‘/2

2

2 3 5 u

1 4 х10 1 4

42×10"

1 4 x 10′ 1

300-1000

109

150

300

ai2o3

6

u1/.

2

1 °B

4 4 х10 1 4

4 5 x 10" 1

5 0 x 10‘ 0

200-1000

10′ 0

170

575

ai2o3

7

3

2 3 3 и

40 х 10 1 4

40 x 10" 1

2 7 X 10′ 0

200 1000

10"

160

575

ai2o3

7

135/s

3

2 3 5 u

1 4 х 10" 3

4 2 x 10 1 ‘

1 4 X 10’0

300-1000

109

150

300

ai2o3

6

11’/,

2

10 в

4 4 х10 1 4

4 5 x 10" ‘

50×10’°

200-1000

10‘ 1

170

300

ai2o3

7

“7.

3

10 в

1 5 х10 14

3 5 x 10 1 2

5 0 x 10 1 0

300 800

10′ 3

110

175

Rex

5‘/2

10’/2

3‘/2

2 3 5 U

2 8 х 10" 4

40 x 10" ‘

5 0 x 10′ 0

300 1000

109

170

500

ai2o3

7

135/8

3

2 3 5 и

5 1 х 10 1 4

5 0 x 10" 1

2 7 x 10’0

300-1000

107

283

850

ai2o3

10

157.

17.

2 3 5 и

40 х 10 1 4

4 0 x 10 1 1

2 7 x 10’0

300-1000

107

150

700

ai2o3

7

135/8

3

2 3 5 и

1 4 х 10 1 3

4 2×10»

1 4 X 10‘ 0

300-1000

10*

1000

390

ai2o3

6

276

3

. ов

1 2 х 10 1 4

3 0 x 10 1 2

1 0 x 10’0

200 1000

10′ 2

1880

175

ai2o3

10

15/s

1

10 в

3 0 х 1 O’1 3

1 8 x 10" 0

2 5 x 10′ 0

300-1100

10′ 3

1850

175

Rex

108

1133/8

3‘/2

*Courtesy Westwghouse Electric Corp.

+Nv is expressed in neutrons cm 2 sec 1

tAl2 Oj is a high alumina content ceramic Rex is a cross linked styrene

 

Подпись: NUCLEAR RADIATION SENSORS-OUT-OF-CORE

*Courtesy Westinghouse Electric Corp.

+ Nv is expressed in neutrons cm 2 sec 1

$a2o3 is a high alumina-content ceramic, Rex is a cross-linked styrene

VJ

00

 

Подпись: NUCLEAR POWER REACTOR INSTRUMENTATION SYSTEMS

Table 2.4—Compensated Ionization Chambers*

Thermal-

Uncomp.

Max. oper.

Typical

Min.

Max.

Nominal dimensions

Length

Sensitive, Overall,

neutron

sensitivity,

gamma

sensitivity,

thermal-

neutron

oper.

voltage,

signal

resistance,

Signal

capacitance,

oper.

temp.,

Insulation type$

Detector

O. D.,

amp/nvt

amp/(R/hr)

flux, nv+

volts (d-c)

ohms

pF

"F

Detector Conn.

in. in.

in.

 

4 4 x 10 1 4

2 3 x10 1 1

2 5 xlO10

300-1000

10’4

275

175

Rex

Rex

14

2 37,

3’/.

4 4 x 10" 4

2 3×10"

2 5 x 10′ 0

300-1000

10′ 4

275

175

Rex

Rex

14

24’/я

з1/.

4 4 x 10 1 4

2 5 x 10Г1 1

2 5 x 1010

300-1000

10′ 2

315

575

ai2o3

ai2o3

14

2il

3’/.

4 4 x 10’4

2 3 x 10" 1

2 5 x 10′ 0

300-1000

10′ 3

275

175

Rex

Rex

14

2 Я

ЗУ,

1 5 x 10Г14

3 5 x 10 1 2

2 5 x 10′ 0

300-800

10′ 3

130

175

Rex

Rex

5’/,

ю У,

ЗУ,

1 5 x10 1 4

3 5 x 10" 2

25×10’"

300-800

10′ 3

135

175

Rex

Rex

5’/2

ю ■/,

з1/,

4 4 x10’4

2 3×10"

25×10’"

300-1000

10′ 3

290

400

ai2o3

ai2o3

14

!9’/8

з1/.

1 0 x 10 1 5

1 5 x10 1 3

1 5 x 10‘2

25-250

101 1

155

660

ai2o3

ai2o3

2У16

75/>6

3

4 4 x10 ’ 4

2 3 x 10 1 1

2 5×10"

300-1500

10′ 3

290

300

ai2o3

ai2o3

14

19’/,

ЗУ.

 

image41

Table 2.5—Fission Counters’

Thermal — neutron sensitivity, (counts/sec)nv +

Max. oper thermal — neutron flux, nv +

Typical oper. voltage, volts (d-c)

Min.

signal

resistance,

ohms

Signal

capacitance,

pF

Max.

oper.

temp.,

°F

Insulator type;;: Detector Conn

Nominal dimensions

Length

Detector

O. D.,

in

Sensitive,

in.

Overall,

in

0 7

14x10s

200-800

109

150

300

ai2o3

ai2o3

6

ny

2

0 2

5 0 x 105

200-800

10“

140

300

ai2o3

ai2o3

6

11 у

2

0 14

7 0 x 10s

200-800

109

150

300

ai2o3

ai2o3

6

ny

2

1 25 x 10 3

10×10*

250 500

109

55

575

ai2o3

Rex

%

5 35/1 6

0 210

0 52

2 0 x 10s

200-800

109

150

300

ai2o3

ai2o3

6

11У

2

0 07

1 4 x 10‘

200-800

109

150

300

ai2o3

ai2o3

6

11У

2

0 7

1 4 x 10s

200-800

109

160

575

ai2o3

ai2o3

7

13s/8

3

0 7

1 4x10s

200 800

109

150

300

ai2o3

ai2o3

6

ny

2

0 7

1 4 x 105

200 800

107

150

700

Al2 O3

ai2o3

6

11У

2

0 1

1 0 x 10"

300 800

109

30

575

ai2o3

ai2o3

4%

?7.

1

0 14

7 0 x 10s

200 800

109

170

500

ai2o3

ai2o3

7

13 %

3

0 5

2 0 x 10 s

200 800

10 7

283

850

ai2o3

ai2o3

10

15 7.

1%

0 25

4 0 x 105

200 800

107

150

700

ai2o3

ai2o3

7

3 3 %

3

5 x 10 3

2 0 X 108

350 650

1010

40

750

ai2o3

1

5

2

0 7

14 x10s

75

109

160

500

ai2o3

7

14

3

0 35

2 8 x 10s

200 800

109

150

300

ai2o3

ai2o3

6

ny

2

§

lOx 10′

200 800

109

150

300

ai2o3

ai2o3

6

11У

2

0 7

14×10’

200-800

108

1000

390

ai2o3

ai2 o3

6

276

3

2 2 x 10 4

5 0 x 108

250 800

5 x 108

2

500

alo3

5/1(,

1’/,.

0 220

1 5 x 10 3

1 0 x 108

300- 500

108

260

500

ai2o3

A1,03

7,

243

0 210

1 x 10-5

10×10”

100-200

109

125

250

I h

Rex

■Уза

6з5/,6

0 090

0 18

6 0 x 10s

200-800

109

45

575

ai2o,

ai2o3

«7.

12

1

0 5

2 0 x 10s

200-800

108

150

390

a 12 0 3

ai2o3

6

ny

2

0 35

3 0 x 10s

200 800

108

90

390

ai2o3

ai2o3

3

2

*Courtesy Westtnghouse Electric Corp.

+ Nv is expressed in neutrons cm 2 sec 1

$A1203 is a high alumina-content ceramic Rex is a cross linked stvrene

§Sensitive material is 238 U Sensitivity to ^ 1 5 MeV neutrons = 10 3 to thermal neutrons = 1 4 x 10 4

 

Подпись: NUCLEAR RADIATION SENSORS-OUT-OF-CORE

Chi

SO

 

image068

‘Courtesy Westinghouse Electric Corp.

+ Nv is expressed in neutrons cm"2 sec 1

*A1303 is a high-alumina-content ceramic, Rex is a cross linked styrene §Oval case 7l s/ in and 3^ 6 in

image42

Table 2.7—Gamma Chambers*

Nominal dimensions

Gamma

sensitivity,

amp/(R/hr)

Max oper. gamma flux, R/hr

Typical oper. voltage, volts (d-c)

Min

signal

resistance,

ohms

Signal

capacitance,

pF

Max.

oper.

temp.,

°F

Detector insulator t

Length

Detector

O. D.,

in

Sensitive,

in.

Overall,

in.

3 0 x10 1 2

4 x 10s

200-1000

101 2

1880

175

ai2o3

10

15‘/8

і

10×10“

5 x 107

100 1200

10′ 3

125

575

ai2o3

8

123/8

2

1 0 x 10 1 0

3 x 107

100-1200

10‘ 3

125

575

Ai203

8

123/8

2

2 5 x 10 9

2 x 103

200-1500

10‘ 1

170

300

ai2o3

7

13?8

3

REFERENCES

1 S Glasstone and M C Edlund, 7be Elements of Nuclear Reactor Theory, D Van Nostrand Company, Inc, Princeton, N J, 1955.

2 Reactor Physics Constants, USAEC Report ANL-5800 (2nd Rev ), Argonne National Laboratory, Superintendent of Docu­ments, U S Government Printing Office, Washington, D C, 1963

3 J A Crowther, Ions, Electrons and Ionizing Radiations, 8th ed, Edward Arnold, Ltd, London, 1949

4 D R Bates (Ed ), Atomic and Molecular Processes, Academic Press, Inc, New York, 1962

5 В В Rossi and H H Staub, Ionization Chambers and Counters, Experimental Techniques, McGraw-Hill Book Company, Inc, New York, 1949

6 USA Standard Glossary of Terms in Nuclear Science and Technology, USAS N 1 1—1967, United States of America Standards Institute, New York 1967

7 W Abson and F Wade, Nuclear Reactor Control Ionization

Chambers, Proc Inst llec Eng (London), 103B(22) 590

(1956)

8 M L Awcock, U2 3 5 Coated Ionization Chamber, Type 1Z-400, Canadian Report AECL-805, pp 44-45, August 1959

9 L Colli and V Facchini, Drift Velocity of Electrons m Argon, Rev Set Instrum, 23: 39 (1952)

10 V Facchini and A Malvicmi, Argon—Nitrogen Fillings Make Ion Chambers Insensitive to 02 Contamination, Nucleonics, 13(4) 36 (1955)

11 W M Trenholme, Effects of Reactor Exposure on Boron Lined and BF3 Proportional Counters,//?/[3] Trans Nucl Sci, NS-6(4)

1 (1959)

12 J L Kaufman, High Current Saturation Characteristics of the ORNL Compensated Ionization Chamber (Q1045), USAEC Report CF-60 5-104, Oak Ridge National Laboratory, May 25, 1960

13 D P Roux, Parallel-Plate Multisection Ionization Chambers for High-Performance Reactors, USAEC Report ORNL 3929, Oak Ridge National Laboratory, April 1966

14 E В Hubbard, Compensated Ion Chamber, in Proceedings of the 1959 Biannual National Nuclear Instrumentation Sym posium, Idaho Falls, Idaho, June 24—26, 1959, ISA Vol 2, pp 99 106, Instrument Society of America

15 W H Todt, A Gamma Compensated Neutron Ionization Chamber Detector for the NERVA Reactor, ILLI (Inst Elec Electron Eng) Trans Nucl Sci, NS-15(1) 9 1 (1968)

16 H S McCreary, Jr, and R T Bayard, A Neutron Sensitive Ionization Chamber with Electrically Adjusted Gamma Com pensation, Rev Set Instrum, 25. 161 (1954)

17 W Baer and R T Bayard, A High Sensitivity Fission Counter, Rev Set Instrum, 24: 138 (1953)

18 W Abson, P G Salmon, and S Pyrah, The Design, Performance and Use of Fission Counters, Proc Inst Elec Eng (London) 105B(22) 349 (1958)

9 S A Korff, Proportional Counters, Nucleonics, 6(6) 5 (1950)

0 S A Korff, Proportional Counters, II, Nucleonics, 7(5) 46

(1950)

21 W Abson, P G Salmon, and S Pyrah, Boron Trifluoride Proportional Counters, Proc Inst Elec Eng (London), 105B(22) 357(1958)

22 N M Gralenski and J E Schroeder, Description and Analysis of a Sensitive BF3 Filled Uncompensated Ionization Chamber USAEC Report DC-60 11 73, General Electric Company, Nov 10, 1960

23 R В Mendell and S A Korff, Plateau Slopes and Pulse Characteristics of Large, High-Pressure BF3 Counters, Rev Set Instrum, 30: 442 (1959)

24 J W Htlborn, Self Powered Neutron Detectors for Reactor Flux Monitoring, Nucleonics, 22(2) 64(1964)

25 J Moteff, Neutron Flux and Spectrum Measurement with Radioactivants, Nucleonics, 20(12) 56 (1962)

26 W C Judd, Continuous Flux Monitoring of a High-Flux Facility with A41, in Reactor Technology Report No 14, USAEC Report KAPL-2000-11, p II1-1, Knolls Atomic Power Labora tory,1960

27 V Adjacic, M Kurepa, and В Lalovic, Semiconductor Measures Fluxes in Operating Core, Nucleonics, 20(2) 47 (1962)

28 R Babcock, Radiation Damage in SiC, IELE Trans Nucl Set, NS-12(6) 43-47 (1965)

29 R V Babcock and H C Chang, SiC Neutron Detectors for High Temperature Operation, in Neutron Dosimetry Symposium Proceedings, Harwell, Eng, December 1962, pp 613 622, Inter national Atomic Energy Agency, Vienna, 1963 (STI/PUB/69)

30 R R Ferber and G N Hamilton, Silicon Carbide High Temperature Neutron Detectors for Reactor Instrumentation, Nucl Appl, 2. June 1966