Phase Composition Study of Corrosion Products at NPP

V. Slugen, J. Lipka, J. Dekan, J. Degmova and I. Toth

Institute of Nuclear and Physical Engineerining Slovak University of Technology Bratislava, Bratislava

Slovakia

1. Introduction

Corrosion at nuclear power plants (NPP) is a problem which is expected. If it is managed properly during the whole NPP lifetime, consequences of corrosion processes are not dramatic. For adequate protection against corrosion it is important to collect all relevant parameters including exact phase composition of registered corrosion products.

Corrosion is more frequent and stronger in secondary circuit of NPP. Steam generator (SG) is generally one of the most important components from the corrosion point of view at all NPP with close impact to safe and long-term operation. Various designs were developed at different NPPs during last 50 years. Wide type of steels was used in respect of specific operational conditions and expected corrosion processes. In our study we were focused on the Russian water cooled and water moderated reactors (VVER). These reactors are unique because of horizontal position of SGs. It takes several advantages (large amount of cooling water in case of loss of coolant accident, good accessibility, large heat exchange surface, etc. …) but also some disadvantages, which are important to take into account during the operation and maintenance. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. In the period of about 10-15 year ago, the feed water pipelines were changed at all SG in all 4 Bohunice units (V-1 and V-2, in total at 24 SGs). Also, a new design of this pipeline system was performed. Actually, there is a time to evaluate the benefit of these changes.

The variability of the properties and the composition of the corrosion products of the stainless Cr-Ni and mild steels in dependence on the NPP operating conditions (temperature, acidity, etc.) is of such range that, in practice, it is impossible to determine the properties of the corrosion products for an actual case from the theoretical data only. Since the decontamination processes for the materials of the VVER-440 secondary circuits are in the progress of development, it is necessary to draw the needed information by the measurement and analysis of the real specimens [1].