AREVA Fatigue Concept — A Three Stage Approach to the Fatigue Assessment of Power Plant Components

Jurgen Rudolph*, Steffen Bergholz, Benedikt Heinz and Benoit Jouan

AREVA NP GmbH Erlangen Germany

1. Introduction

1.1 General remarks

Within the continuously accompanying licensing process for NPPs until the end of their operational lifetime, the ageing and lifetime management plays a key role. Here, one of the main tasks is to assure structural integrity of the systems and components. With the help of the AREVA Fatigue Concept (AFC), a powerful method is available. The AFC provides different code-conforming fatigue analyses (e. g. according to the wide spread ASME code [1]) based on realistic loads. In light of the tightening fatigue codes and standards, the urge is clearly present that, in order to still be able to comply with these new boundaries, margins which are still embedded within most of the fatigue analyses in use, have to be reduced. Moreover, thermal conditions and chemical composition of the fluid inside the piping system influences the allowable fatigue levels, which have come under extensive review due to the consideration of environmentally assisted fatigue (EAF) as proposed in the report [2]. Therefore, for highly loaded components, some new and improved stress and fatigue evaluation methods, not overly conservative, are needed to meet the increasingly stringent allowable fatigue levels. In this context, the fatigue monitoring system FAMOS, central module of AFC, is able to monitor and record the real local operating loads. The different modules of the AFC are schematically represented in Figure 1.