Separation and purification of nickel

The sequential determination is based on radiochemical procedure that consists of three steps performed by anion-exchange chromatography, extraction chromatography, using Eichrom resins, and precipitation techniques. For each aliquot was added 2 mL of Ni (0.01 mol L-1), 1 mL of Sr (0.02 mol L-1) and 2 mL of Fe (0.01 mol L-1) as carriers and yield monitor. In the first step, the separation of Pu by ion exchange chromatography, anion exchange column (Dowex 1×8, Cl-form. 100-200 mesh, Sigma Chemical Co. USA), is based on the formation of anionic complexes of the Pu(IV) with NO3- or Cl — in concentrated HNO3 or HCl. In the second one the effluent from the anion exchange column was used to separate Am and Sr by co-precipitation with oxalic acid of U, Fe and Ni that remains in the filtrate.

In the third step we use the filtrate to separate Ni from U and Fe. The filtrate was heated to dryness and the solid obtained was dissolved in 30 mL of concentrate nitric acid and heated to dryness in order to destroy the excess of oxalic acid. The solid obtained was hot dissolved in 30 mL of 3:2 nitric acid and was diluted to 200 mL with deionized water. The pH of the solution was corrected to 9.0 with ammonia hydroxide for co-precipitation of iron hydroxide and uranium while Ni forms a soluble [Ni(NH3)4]2+complex.

After filtration, the filtrate was heated to dryness and retaken with 20 mL of HCl concentrate and again heated to dryness. The solid obtained was dissolved in 25 mL of 1 mol L-1 HCl and was added 1 mL of ammonium citrate to the sample being the pH adjusted to 8-9 with ammonium hydroxide (Eichrom Technologies, 2003). A nickel resin extraction chromatography column (Eichrom Industries Inc. USA) was pre-conditioned with 5 mL of solution 0.2 mol L-1 ammonium citrate that has been adjusted to pH 8-9 with ammonium hydroxide. The column was loaded with the sample and rinsed with 20 mL of solution 0.2 mol L-1 ammonium citrate. Nickel was eluted with 10 mL of solution 3 mol L-1 HNO3. Figure 1 represents the flowchart for sequential separation of radionuclides in a sample of radioactive waste.