Combined procedure for Ni radionuclides separation

An analytical procedure for radiochemical characterization of radioactive waste material containing some of the radionuclides cited in Table 1 was developed. Radionuclides 242Pu, 238Pu, 239 + 240Pu, 241Am, 235U and 238U were determined by alpha spectrometry whilst 241Pu, 90Sr, 55Fe and 63Ni were determined by LSC and 59Ni by low energy gamma spectrometry. 242Pu, 238Pu, 243Am and 232U were used as tracers and Sr (2 mg/mL), Fe (3 mg/mL) and Ni (2 mg/mL) were used as carriers. In this work was developed a sensitive method for sequential analyses of the radionuclides in samples of radioactive waste. The samples analyzed were evaporator concentrate, resin and filter originated from Brazilian Nuclear Power Plants located at Angra dos Reis city (Reis et al, 2011).

The radiochemical procedure consists of three steps performed by anion-exchange chromatography, precipitation techniques and extraction chromatography, using TRU, Sr and Ni resins. In the first step, it was made the separation of 242Pu, 238Pu, 239 + 240Pu and 241Pu of the matrix by ion exchange chromatography using an anion exchange column (Dowex 1X8, Cl-form, 100-200 mesh, Sigma Chemical Co., USA). The separation is based on the formation of anionic complexes of Pu (IV) with NO3- or Cl — in concentrated HNO3 or HCl. In the second one, the effluent from the exchange column was used to separate Am and Sr by co-precipitation with oxalic acid of Fe, U and Ni that are retained in the filtrate. Americium and Sr isolation was done using commercially available resins, TRU resin and Sr Resin, respectively. These resins can be used for a number of analytical purposes, including the separation of actinides as a group from the matrix, separation of Sr from the matrix and sequential separation of individual actinides and Sr. In the third step Ni was separated by co-precipitation of Fe and U. And after that, Fe and U were separated by ion exchange chromatography using the anion exchange column (Dowex 1X8, Cl form, and 100-200 mesh) and Ni was isolated by Ni Resin extraction chromatography column from Eichrom Technologies, Inc. This work represents a fundamental step in establishing an analytical protocol for radioactive waste management system.

The safety planning for disposal of LLW and ILW radioactive waste takes account in special long half-life radionuclides. Both 59Ni and 63Ni are activation products of stable nickel, which was present as an impurity in fuel cladding materials or the uranium fuel of reactors (Kaye et al., 1994). 59Ni (half-life 7.6 x 104 years) is produced by neutron irradiation of 58Ni and decays by electron capture to stable 59Co with emission of 6.9 keV x-rays. 63Ni (half-life 100 years) emits only low-energy beta rays with a maximum energy of 67 keV, and is produced through neutron irradiation of 62Ni. Counting requirements dictated that prior the measurement these isotopes should be separated and purified with the purpose of removing the radiometric and chemical interferent elements so that they are essentially free of significant radioactive contamination.

Hou (Hou et al., 2005) proposed an analytical method for the determination of 63Ni and 55Fe in nuclear waste samples. Hydroxide precipitation was used to separate 63Ni and 55Fe from the interfering radionuclides as well as from each other. The separated 63Ni was further purified by extraction chromatography. According to him the recovery of Fe and Ni by hydroxide precipitation using NH4OH, was about 99, 9% and 21, 9%, respectively. Lee (Lee et al., 2007) proposed a sequential separation procedure developed for determination of 99Tc, 94Nb, 55Fe, 90Sr and 59/63Ni in various radioactive wastes. Ion exchange and extraction chromatography were adopted for the individual separation of the radionuclides. According to him Ni separation on the cation-exchange resin column was not selective enough therefore a further purification of Ni was performed by precipitation with dimetylglyoxime.

The aim of this work is the sequential analysis of nuclear waste containing several radionuclides (Pu, U, Am, Sr, Fe e Ni) where the last step consists in the separation of U, Fe and Ni. Thus we established the procedure for sequential separation of Pu, Am, Sr (Reis et al., 2011) in which we also included one step that is the hydroxide precipitation to separate U and Fe from Ni because Ni remains in solution in the co-precipitation of U and Fe.

2.3 Experimental