Radiochemical for radionuclides difficult to measure

2.2 Radiochemical separation

The methods for separating, collecting, and detecting radionuclides are similar to ordinary analytical procedures and employ many of the chemical and physical principles that apply to their nonradioactive isotopes. One of the differences is interesting from the viewpoint of methodology. Substance separation in analytical chemistry in the majority of cases is not an end in itself. In radiochemistry, separation is most often an end in itself, for example, when a radionuclide is purified of other radioactive elements (Zolotov, 2005). Techniques used for separation include co-precipitation, liquid-liquid extraction, ion exchange and extraction chromatography. In some cases, two or more of these techniques are combined.

In order to account for the inevitable loss of the sample during separation, a specific isotope or tracer is added to the sample. A tracer represents the addition to an aliquot of sample a known quantity of a radioactive isotope that is different from that of the isotope of interest but expected to behave in the same way. Sample results are normally corrected based on tracer recovery. The percent of tracer lost in the chemical processes is equal to the percent of sample lost, assuming the tracer is homogeneously mixed with the sample and is brought into chemical equilibrium with the sample. Radiochemical analysis frequently requires the radiochemist to separate and determine radionuclides that are present at extremely small quantities. The amount can be in the picomole range or less, at concentrations in the order of 10-15 to 10-11 molar (United States Environmental Protection Agency, 2004). The use of a material that is different in isotopic make-up to the analyte and that raises the effective concentration of the material to the macro level is referred to as a carrier, a substance that has a similar crystalline structure that can incorporate the desired element.

Radiochemical waste characterization is the identification of radionuclides contained in a package of nuclear waste and the determination of their concentration. The problem the waste producers have to cope with comes from the fact that those nuclides which are mainly (pure) |3- or а-emitters cannot be measured by direct methods such as у-scanning. In the waste packages produced by a nuclear power reactor the radionuclides may be originated as fission products from the nuclear fuel, activation products and transmutation nuclides, Table 1.

Products

Radionuclides

Decay mode

Fission products from the

90Sr, 99Tc, , 137Cs, 129I

в

nuclear fuel

134Cs

Y

activation

3H, 14C, 94Nb,60Co, 63Ni, 54Mn

в

55Fe, 59Ni

EC

241Am, 242Cm, 244Cm, 235U,

Transmutation nuclides

238U and 239Pu, 240Pu, 242PU

a

241Pu

________________ в________________

Table 1. Radionuclides obtained as products of nuclear power plants and their origin

Identification of these nuclides requires methods that, in general, involve analyses of waste samples using complex chemical analysis to separate the various radionuclides for measurement. Among the various proposed methods there are those who seek the identification of a radionuclide isolated or those seeking to identify by simultaneous determination two or more radionuclides in the same analysis.

The main constraint for a new protocol is to obtain a high recovery yield, a high-energy resolution and low interferences of other radionuclides. Thus, it is necessary to develop accurate and reliable methods for the determination of radionuclides in the low and intermediate radioactive samples. A simultaneous determination procedure was developed for the separation of Pu isotopes, 241Am, 242Cm, 244Cm, 89Sr and 90Sr using precipitation by oxalate, ion exchange resin, extraction of plutonium by TTA (thenoyltrifluoro acetone/benzene) and Sr by precipitation techniques. This method was applied for determination of these radionuclides in the grass, collected near Munich after the fallout from the nuclear accident at Chernobyl (Bunzl & Kracke, 1990). In another case, Pu, Am and Cm were determined by extraction chromatography using an organophosphorus compound immobilized on an inert support commercially available under the name TRU Resin (for Transuranium specific) from Eichrom Technologies, Inc. This method was used in samples from nuclear power plants such as spent ion exchange resins and evaporator concentrates (Rodriguez et al., 1997). Besides, combined procedure was used for the determination of 90Sr, 241Am and Pu isotopes by anion exchange for Pu isotopes analysis, the selective method for Sr isolation based on extraction chromatography using Sr Resin and the TRU Resin for separation of Am (Moreno et al., 1997). In the radiological characterization of low — and intermediate-level radioactive wastes the separation of Pu isotopes, 241Am, 237Np and 90Sr was performed by anion-exchange chromatography, extraction chromatography, using TRU and Sr Resin, and precipitation techniques (Tavcar et al., 2007).