OSU-MASLWR-001 test description

The purpose of the OSU-MASLWR-001 test (Modro et al. 2003; Reyes et al., 2007; Pottorf et al., 2009; Mascari et al., 2011e), a design basis accident for MASLWR concept design, was to determine the pressure behavior of the RPV and containment following an inadvertent actuation of one middle ADS valve. The test successfully demonstrated the blowdown behavior of the MASLWR test facility during one of its design basis accident.

Following the inadvertent middle ADS actuation the blowdown of the primary system takes place. A subcooled blowdown, characterized by a fast RPV depressurization, takes place after the Start Of the Transient (SOT). A two-phase blowdown occurs when the differential pressure, at the break location, results in fluid flashing. A choked two-phase flow condition prevails and a decrease in depressurization rate of the primary system is experimentally observed. When the PRZ pressure reaches saturation, single phase blowdown occurs and the depressurization rate increases. The RPV and HPC pressure and the primary saturation temperature are shown in figure 7. The Psat, saturation pressure, is based on the temperature at the core outlet.

0 1000 2000 3000

Time (s)

Fig. 7. RPV and HPC pressure behaviour during the OSU-MASLWR-001 test (Modro et al., 2003; Reyes et al., 2007; Mascari et al., 2011e).

At 539 s after the SOT the pressure difference between the RPV and the HPC reaches a value less than 0.517 MPa, one of the high ADS valve is opened and, with approximately 10 s of delay, the other high ADS valve is opened equalizing the pressure of the primary and HPC system.

At 561 s after the SOT the pressure difference between the RPV and the HPC reaches a value less than 0.034 MPa, one of the sump recirculation valve is opened and, with approximately 10 s of delay, the other sump recirculation valve is opened terminating the blowdown period and starting the refill period. The refill period takes place for the higher relative coolant height in the HPC compared to the RPV. Figure 8 shows the RPV level evolution experimentally detected during the test. The RPV water level never fell below the top of the core during the execution of the test 1.

During the saturated blowdown period, the inlet and the outlet temperature of the core are equal each other assuming the saturation temperature value. A core reverse flow and a core coolant boiling off at saturation is present in the facility during this period. When the refill takes place the core normal flow direction is restarted and a delta T core is observed depending on the refill rate and core power, figure 9.

When the refill of the reactor takes place the level of the coolant reaches the location of the flow rate HL measurement point, therefore an increase of the RPV flow rate is detected for this phenomenon, figure 10.

Fig. 8. RPV water level inventory behaviour during the OSU-MASLWR-001 test (Modro et al., 2003; Reyes et al., 2007; Mascari et al., 2011e).

Fig. 9. Inlet/outlet core temperature behavior during the OSU-MASLWR-001 test (Modro et al., 2003; Mascari et al., 2011e).