MASLWR conceptual design and SBLOCA mitigation strategy

The MASLWR (Modro et al., 2003; Reyes et al. 2007, Mascari et al., 2011a; Mascari et al., 2011e), figure 1, is a small modular integral PWR of 35 MWe developed by Idaho National Engineering and Environmental Laboratory, OSU and Nexant-Bechtel. During steady state condition the primary fluid, in single phase natural circulation, removes the core power and transfers it to the secondary fluid through helical coil SG. In transient condition the core decay heat is removed through a passive primary/containment coupling mitigation strategy based on natural circulation. The use of natural circulation reduces the number of active components simplifying the configuration of nuclear steam supply system. The reactor core and a helical coil SG are both located within the RPV. The integrated SG consists of banks of vertical helical tubes located in the upper region of the vessel outside of the HL chimney.

Its small size considered the prototypical MASLWR relatively portable and thus well suited for employment in smaller electricity grids but take into account its design simplicity, its simplified parallel construction, the consequent reduction of the capital costs, reduction of construction time, reduction of finance and operation cost, recognizes it to be able to reach larger electricity market in developing and developed regions (Modro et al., 2003; Reyes & Lorenzini, 2010; Mascari et al., 2011d).

As it is shown in figure 1, the primary coolant flows outside the SG tubes, and the Feed Water (FW) is fully vaporized resulting in superheated steam at exit of the SG. The safety systems are designed to operate passively. The RPV is surrounded by a cylindrical containment, partially filled with water. This containment provides pressure suppression and liquid makeup capabilities and is submerged in a pool of water that acts as the ultimate heat sink. The MASLWR steady-state operating conditions are reported in the table 1.

Reactor Thermal Power

150 MW

Primary Pressure

7.60 MPa

Primary Mass Flow Rate

597 kg/s

Reactor Inlet Temperature

491.80 K

Reactor Outlet Temperature

544.30 K

Primary Side Saturation Temperature

565 K

Secondary Side Steam Pressure

1.50 MPa

Secondary Side Steam Outlet Quality

1

Secondary Side Steam Temperature

481.40 K

Secondary Side Saturation Temperature

471.60 K

Feedwater Temperature

310 K

Feedwater Flowrate

56.10 kg/s

Table 1. MASLWR steady-state operating conditions (Modro et al., 2003; Reyes & King, 2003; Reyes, 2005b).

The RPV, figure 1, can be depressurized using the Automatic Depressurization System (ADS), consisting of six valves discharging into various locations within the containment. In particular two independent vent valves (high ADS valves), two independent depressurization valves (middle ADS valves) and two independent sump recirculation valves are considered in the MASLWR design.

The integral arrangement of the plant allows avoiding pressurized primary components outside the RPV eliminating the possibility of large break Loss of Coolant Accident (LOCA) and reducing the Small Break LOCA (SBLOCA) initiating event. Of particular interest is the SBLOCA mitigation strategy typical of the MASLWR design. Following, for example, an inadvertent opening of an ADS valve, a primary side blowdown into the pressure suppression containment takes place. The RPV blowdown causes a primary pressure decrease and a consequent containment pressure increase causing a safety injection signal. It automatically opens, figure 1, the high ADS valves, the middle ADS valves and the sump recirculation valves. As the primary and the containment pressures become equalized, the blowdown is terminated, and a natural circulation flow path is established. Infact, when the sump recirculation valves are opened the vapor produced in the core goes in RPV upper part and through the high ADS valve goes to the containment where it is condensed. At this point through the sump recirculation lines and the down comer the fluid goes to the core again. The pressure suppression containment is submerged in a pool that acts as the ultimate heat sink. This mechanism, based on natural circulation, permits the cooling of the core (Modro et al., 2003; Reyes & King, 2003; Reyes, 2005b; Reyes et al., 2007; Mascari et al., 2011).

The MASLWR concept design and its passive safety features were tested in a previous test campaign developed at the OSU-MASLWR experimental facility (Modro et al., 2003; Reyes & King, 2003; Reyes et al., 2007; Mascari et al., 2011a; Mascari et al., 2011e), figure 2. The planned work related to the OSU-MASLWR test facility will be not only to specifically investigate the MASLWR concept design further but also advance the broad understanding of integral natural circulation reactor plants and accompanying passive safety features as well. Furthermore an IAEA International Collaborative Standard Problem (ICSP) on the "Integral PWR Design Natural Circulation Flow Stability and Thermo-Hydraulic Coupling of Containment and Primary System During Accidents" is being hosted at OSU and the experimental data will be collected at the OSU-MASLWR facility. The purpose of this IAEA ICSP is to provide experimental data on single/two-phase flow instability phenomena under natural circulation conditions and coupled containment/reactor vessel behavior in integral-type reactors (Woods & Mascari, 2009; Woods et al.; 2011).