EPZ in relation to PRA

1.2 PRA application for IRIS design

In the Safety-by-Design™ approach, the Probabilistic Risk Assessment plays obviously a key role, therefore a Preliminary IRIS PRA was initiated, and developed with the design, in an iterative way. This unprecedented application of the PRA techniques in the initial design phase of the reactor and the deep impact that this had in the development of the project was described in already published papers (Carelli, 2004, 2005).

Summarizing this, it is possible to note, that the success of the IRIS Safety-by-Design™ and PRA-guided design in the internal and external events assessments (Carelli, 2004) is due to the effective interactions between the IRIS Design team and the IRIS PRA team (see Figure 2). The main task of the PRA team was to identify high risk events and sequences.

The IRIS Design team provided information concerning the IRIS plant and site design. It updated IRIS component/system description and design data. PRA team identified assumptions concerning IRIS plant and site design requirements. The design team then reviewed assumptions concerning IRIS plant and site design requirements.

A preliminary evaluation of internal and external events was performed in the Preliminary IRIS PRA, to determine if there were any unforeseen vulnerabilities in the IRIS design that could be eliminated by design during the still evolving design phase of the reactor. The preliminary analysis of external events included both quantitative and qualitative analyses. For the quantitative analyses, bounding site characteristics were used in order to minimize potential future restrictions on plant siting.

Referring to Figure 3, it can be seen that the initial PRA for internal events resulted in a Core Damage Frequency (CDF) of 2.0-10-6. The PRA team then worked with the IRIS design team in order to implement design changes that improved plant reliability and to identify additional transient analyses that showed no core damage for various beyond design basis transients. The resulting CDF around 1.2-10-8 was therefore obtained thanks to a combination of the Safety-by-DesignTM features of the IRIS design, coupled with the insights provided by the PRA team regarding success criteria definition, common cause failures, system layout, support systems dependencies and human reliability assessment.

Being still in a design development/refinement phase, the PRA was kept constantly updated with the evolution of the design; moreover, all the assumptions required to have a reasonable complete PRA model capable of providing quantitative insights as well as qualitative considerations, were accurately tracked down and the uncertainties connected with such assumptions were assessed. These refinements of the Preliminary IRIS PRA yielded a predicted CDF from internal events around 2.0-10-8.

Design team pra procedure

image002

Fig. 2. IRIS Design and PRA Team Interactions

image003

The same method was extended also to the external events. In comparison to events dominant in other plant PRA, the IRIS plant was expected to be significantly less vulnerable to some external events. In external events PRA, the focus was set on the plant BOP, that has not been analyzed as extensively or explicitly as accidents caused by internal events. In general, the IRIS plant arrangement structures were designed to minimize the potential for natural and manmade hazards external to the plant from affecting the plant safety related functions. The external events PRA insights were expected to help taking full advantage of the potential safety oriented features of the IRIS design and this implied probabilistic consideration of extreme winds, fires, flooding, aircraft crash, seismic activity, etc. In addition, it was shown that estimation of risk measures could be related to the site size and could be the input for the emergency zone planning.