Passive emergency heat removal system (EHRS)

IRIS implements a passive emergency heat removal system made of four independent subsystems, each of which has a horizontal, U tube heat exchanger connected to a separate SG feed/steam line. These heat exchangers are immersed in the refuelling water storage tank (RWST) located outside the containment structure. The RWST water provides the heat sink to the environment for the EHRS heat exchangers. The EHRS is sized so that a single subsystem can provide core decay heat removal in the case of a loss of secondary system heat removal capability. The EHRS operates in natural circulation, removing heat from the primary system through the steam generators heat transfer surface, condensing the steam produced in the EHRS heat exchanger, transferring the heat to the RWST water, and returning the condensate back to the SG. The EHRS provides both the main post-LOCA depressurization (depressurization without loss of mass) of the primary system and the core cooling functions. It performs these functions by condensing the steam produced by the core directly inside the reactor vessel. This minimizes the break flow and actually reverses it for a portion of the LOCA response, while transferring the decay heat to the environment.

XVI-4.2. Emergency boration tanks (EBT)

IRIS has two full-system pressure emergency boration tanks (EBTs) to provide a diverse means of reactor shutdown by delivering borated water to the RV through the direct vessel injection (DVI) lines. By their operation these tanks also provide a limited gravity feed makeup water to the primary system.