International collaborations

R&D expenditures on advanced nuclear power reactors today are far less than in the 1970s (see figure 1.1, Overview, chapter 1). This has led to more international collaboration.

One such collaboration between government-funded nuclear R&D establishments is the Generation IV International Forum (Gen IV Forum). This forum was launched in 2001 at the instigation of the United States to facilitate international collaboration on the design of a new generation of nuclear reactors to be deployed after 2030. In 2002, the Forum selected six types for study, including three fast-neutron breeder reactors cooled respectively by liquid sodium, a liquid lead-bismuth alloy, and helium. Thus far, the collaborations on these efforts have focused on coordinating and pooling national research on reactor design, safety, proliferation resistance, fuel fabrication technologies, material development, and other topics.77

A second international collaboration, the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated by a resolution of the International Atomic Energy Agency (IAEA) Board in 2001. In part because of the exclusion from the Gen IV Forum of Russia and other states with which the United States did not have agreements for nuclear cooperation. Thus far, INPRO has produced a report on "Guidance for the Evaluation of Innovative Nuclear Reactors and Fuel Cycles" and manuals on how to implement the assessment of "innovative nuclear-energy systems." Currently, INPRO members are collaborating on research projects and researchers from different countries are assessing proposed systems.78

In 2006, the George W. Bush Administration proposed GNEP with a goal of expanding nuclear power in the United States and abroad while reducing both the nuclear weapon proliferation risks and the requirements for long-term geological disposal of radioactive waste. To achieve these goals the Administration proposed abandoning the once-through nuclear fuel, where nuclear fuel would be permanently sequestered in geologic repositories, in favor of the development and deployment of a closed fuel cycle based on advanced nuclear fuel reprocessing and fast-neutron "burner" reactors.

The GNEP program envisioned using fast-neutron reactors to burn rather than breed plutonium and the minor transuranic elements (neptunium, americium, and curium) to avoid having to place these long half-life radioactive materials into a geologic waste repository. The ratio of the number of fast reactors to conventional reactors depends upon the conversion ratio, defined as the ratio of the rate of production to the rate of destruction of the transuranic isotopes in the fast-neutron reactor. For fast-neutron reactors a wide range of conversion ratios is possible depending upon the reactor design. The lower the fast reactor conversion ratio, the fewer burner reactors would be required, with the number of fast burners proportional to 1/(1 — CR). In 1996, a National Research Council report cited General Electric as believing that the lowest possible conversion ratio that could be obtained using its PRISM fast reactor design, consistent with acceptable safety, as 0.6.79 ANL more recently claims that a conversion ratio of 0.25 can be safely achieved.80 Assuming the fast reactor conversion ratio is in the range of 0.25 to 0.6, 40-75 GWe of fast-reactor capacity would be required for every 100 GWe of light-water reactors.81

Despite the shift of mission from plutonium breeding to burning, the dream of breeding lives on. Although one ANL design of a fast-neutron burner reactor features a compact core where the inert (steel) blanket could not be readily converted to a blanket with uranium or depleted uranium, suitable for breeding, ANL in 2007 favored another design that could be converted to a breeder more easily but would cost more — on the order of 0.8 cents per kilowatt-hour.82

Conclusion

Although there are safety issues generic to liquid metal fast reactors, it does not appear that they were the predominant reasons for the demise of the breeder program in the United States. More important were proliferation concerns and a growing conviction that breeder reactors would not be needed or economically competitive with light-water reactors for decades, if ever.

Under GNEP, the DOE expressed renewed interest in fast reactors, initially as burner reactors to fission the actinides in the spent fuel of the light-water reactors. So far, the new designs are mostly paper studies, and the prospect of a strong effort to develop the burner reactors is at best uncertain. The Obama Administration has terminated the GNEP Programmatic Environmental Impact Statement and efforts by DOE to move to near-term commercialization of fast reactors and the closed fuel cycle for transmutation of waste. As this report went to press, it was debating whether to even continue R&D on fast-neutron reactors.83 The economic and nonproliferation arguments against such reactors remain strong.

image053

Contributors

Thomas B. Cochran is a senior scientist in the nuclear program and holds the Wade Greene Chair for Nuclear Policy at the Natural Resources Defense Council (NRDC). He served as director of the nuclear program until 2007. He is a member of the Department of Energy’s Nuclear Energy Advisory Committee. Cochran is the author of The Liquid Metal Fast Breeder Reactor: An Environmental and Economic Critique (Washington, D. C.: Resources for the Future, 1974). Cochran received his Ph. D. in physics from Vanderbilt University in 1967. He was a co-author of chapter 7, Fast Reactor Development in the United States.

Harold Feiveson is a Senior Research Scientist and Lecturer in Princeton University’s Woodrow Wilson School. He has a PhD in public affairs from Princeton University (1972). Feiveson is the editor of Science & Global Security. Along with Professor von Hippel, he was the co-founder and co-director of the Program on Science and Global Security until July 2006. Feiveson was a co-author of Chapter 7, Fast Reactor Development in the United States.

Walt Patterson is Associate Fellow in the Energy, Environment and Development Programme at Chatham House in London, UK, and a Visiting Fellow at the University of Sussex. A postgraduate nuclear physicist, he has been actively involved in energy and environmental issues since the late 1960s. Keeping The Lights On: Towards Sustainable Electricity (Chatham House/Earthscan 2007, paperback 2009) is his thirteenth book. He has also published hundreds of papers, articles and reviews, on topics including nuclear power, coal technology, renewable energy systems, energy policy and electricity. He has been specialist advisor to two Select Committees of the House of Commons, an expert witness at many official hearings, a frequent broadcaster and advisor to media, and speaker or chair in conferences around the world. He has been awarded the Melchett Medal of the Energy Institute. The Scientific American 50 named him ‘energy policy leader’ for his advocacy of decentralized electricity. His current project for Chatham House and the Sussex Energy Group is called "Managing Energy: for climate and security". Patterson was the author of chapter 6, Fast Breeder Reactors in the United Kingdom.

Gennadi Pshakin is head of the Analytical Center for Nonproliferation at the Institute for Physics and Power Engineering (IPPE), Obninsk, and teaches at Obninsk Nuclear Technology University. Between 1985 and 1993, he worked as an IAEA safeguards inspector, and in 2003 was part of the IAEA team in Iraq. In the 1990s, he participated in negotiations on the trilateral initiative (USA — Russia — IAEA). Since 2001 he has been part of the INPRO project on developing a Proliferation Resistance Assessment Methodology and his recent research covers material protection, control, and accounting activities in Russia. His PhD (1980) was in nuclear engineering. Pshakin was the author of Chapter 5, The USSR — Russian Fast Neutron Reactor Program

M. V. Ramana is currently a Visiting Scholar with the Program in Science, Technology and Environmental Policy and the Program on Science and Global Security at the Woodrow Wilson School of Public and International Affairs, Princeton University. He has a PhD in physics (1994) and has held research positions at the University of Toronto, Massachusetts Institute of Technology, and Princeton University. He has taught at Boston University, Princeton University, and Yale University. His research focuses on India’s nuclear energy and weapon programs. Currently, he is examining the economic viability and environmental impacts of the Indian nuclear power program. He is actively involved in the peace and anti-nuclear movements, and is associated with the Coalition for Nuclear Disarmament and Peace as well as Abolition-2000, a global network to abolish nuclear weapons. Ramana was the author of Chapter 3, India and Fast Breeder Reactors.

Mycle Schneider is an independent nuclear and energy consultant. He founded the Energy Information Agency WISE-Paris in 1983 and directed it until 2003. Since 1997 he has provided information and consulting services to the Belgian Energy Minister, the French and German Environment Ministries, the International Atomic Energy Agency, Greenpeace, the International Physicians for the Prevention of Nuclear War, the Worldwide Fund for Nature, the European Commission, the European Parliament’s Scientific and Technological Option Assessment Panel and its General Directorate for Research, the Oxford Research Group, the French National Scientific Research Council, and the French Institute for Radiation Protection and Nuclear Safety. Since 2004 he has been in charge of the Environment and Energy Strategies lecture series for the International MSc in Project Management for Environmental and Energy Engineering Program at the French Ecole des Mines in Nantes. In 1997, along with Japan’s Jinzaburo Takagi, he received Sweden’s Right Livelihood Award "for serving to alert the world to the unparalleled dangers of plutonium to human life." Schneider was the author of chapter 2, Fast Breeder Reactors in France.

Tatsujiro Suzuki is an Associate Vice President of the Central Research Institute of Electric Power Industry, as well as a Senior Research Fellow at the Institute of Energy Economics of Japan. He is also a Visiting Professor at the Graduate School of Public Policy, University of Tokyo. He has a PhD in nuclear engineering from Tokyo University (1988). He was Associate Director of MIT’s International Program on Enhanced Nuclear Power Safety from 1988-1993 and a Research Associate at MIT’s Center for International Studies (1993-95) where he co-authored a report on Japan’s plutonium program. For the past 20 years, he has been deeply involved in providing technical and policy assessments of the international implications of Japan’s plutonium fuel-cycle policies and in examining the feasibility of interim spent-fuel storage as an alternative. He is a member of the Advisory Group on International Affairs of the Japan Atomic Energy Commission and now is also a member of the Ministry of Economy, Trade and Industry’s Advisory Committee on Energy. Suzuki was the author of chapter 4, Japan’s Plutonium Breeder Reactor and its Fuel Cycle.

Frank von Hippel is Professor of Public and International Affairs at Princeton University’s Woodrow Wilson of Public and International Affairs. He has a PhD in nuclear physics (1962) from Oxford University. He is a co-founder of Princeton’s Program on Science and Global Security. In the 1980s, as chairman of the Federation of American Scientists, he partnered with Evgenyi Velikhov in advising Mikhail Gorbachev on the technical basis for steps to end the nuclear arms race. In 1994-95, he served as Assistant Director for National Security in the White House Office of Science and Technology Policy. He has worked on fissile material policy issues for the past 30 years, including contributing to: ending the U. S. program to foster the commercialization of plutonium breeder reactors; convincing the United States and the Soviet Union to embrace the idea of a Fissile Material Production Cutoff Treaty; launching the U. S.-Russian cooperative nuclear materials protection, control and accounting program; and broadening efforts to eliminate the use of HEU in civilian reactors worldwide. Von Hippel was the author of chapter 1, Overview: The Rise and Fall of Plutonium Breeder Reactors and a co-author of chapter 7, Fast Reactor Development in the United States