Power generation at biorefineries

Biorefineries can choose to generate electricity from biomass or byproducts into electricity. Although biomass electricity is typically more expensive than fossil fuel power, there are two scenarios where biomass power is an obvious choice: remote or stranded biomass supply, and production of excess byproducts.

There are large quantities of biomass in remote or stranded locations that are classified as wastes. A significant amount of this waste decomposes without yielding economic value. This loss occurs, in part, because waste biomass is difficult to gather reliably in sufficient quantities, and waste is a heterogeneous material which makes conversion difficult. Small-scale power generation is one way to capitalize on potentially low-cost feedstock.

Biomass power generation can be accomplished in several ways: biomass combustion can provide steam to drive a steam turbine; biomass gasification yields syngas that could be fed into a gas turbine; biomass pyrolysis or torrefaction yield intermediate materials that can be combusted or gasified to produce power. Representative costs for these three scenarios are given in Table 2.8.

The low capital costs ($600/kW) for biomass combustion to power are indicative of the technology’s simplicity (Dornburg and Faaij, 2001; Jenkins et al., 2011). However, biomass combustion is less efficient than the alter­natives even at large scale. Biomass gasification for power generation requires additional capital investment for the more expensive gas turbines and auxiliary equipment to ensure that gas conditions meet strict particulate matter requirements. The higher costs are compensated by higher efficiencies and ability to scale resulting in lower operating costs. The gasification scenario allows for the use of an integrated gas combined-cycle (IGCC) design with both steam and gas turbines to further improve the process

Table 2.8 Capital and operating costs for biomass power generation

Technology

Capital cost (kW-1 capacity)

Operating cost (kWh-1)

Combustion to power (Dornburg and Faaij,

$600

$0.075

2001)

Gasification to power

$1600

$0.05

Pyrolysis to power (Bridgwater et al., 2002)

$2400

$0.08

efficiency. Finally, the power industry has shown interest in pyrolysis and torrefaction products as a means to overcome some of the challenges faced by biomass, e. g. storage, heating value, feeding. Pyrolysis and torrefaction processes yield products that can be stored with less degradation and a lower footprint, that have a higher heating value, and are easier to feed into existing equipment than raw biomass. These benefits come at a cost. Capital costs are expected to be much higher than conventional alternatives ($2400/kW) with higher operating costs as well ($0.08/kWh) (Bridgwater et al, 2002).