Formation of Inhibitors During Acid Hydrolysis

During acid hydrolysis of lignocellulosics, aliphatic acids (acetic, formic, and lev — ulinic acid), furan derivatives, and phenolic compounds are formed in addition to the sugars. Furfural and 5-hydroxymethyl furfural (HMF) are the most important furans, formed by decomposition of pentoses and hexoses respectively [24]. Acetic acid has been reported in the hydrolysis of the acetyl groups into hemicellulose as a consequence of deacetylation of acetylated pentosan [25]. Multiple phenolic com­pounds are derived from lignin, including vanillin, vanillic acid, vanillyl alcohol, 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde, coumaric acid, syringaldehyde, syringic acid, cinnamaldehyde, dihydroconiferyl alcohol, hydroquinone, catechol, veratrole, acetoguaiacetone, homovanillic acid, and Hibbert’s ketones [25]. HMF is converted at a lower rate than furfural, which may be due to lower membrane permeability and cause a longer lag-phase in the growth of microorganisms [26]. The phenolic compounds penetrate biological membranes and cause them to lose integrity, thereby affecting the membranes’ ability to serve as selective barriers. The microbial growth was found to be inhibited in the presence of acetic acid (>3.5 g/l) in hemicellulosic hydrolysates, this phenomenon may occur due to the inflow of undissociated acid into cytosol [26].