Transport Biofuels from Wastes

Zah et al. (2007) have studied cumulative energy demand associated with methane production from a variety of wastes using allocation on the basis of price and a zero value for the waste itself. Thus, the calculation of energy demand and emissions linked to methane production from wastes was restricted to the waste-to-wheel stages of the life cycle. Comparison was with natural gas. The wastes considered were: sewage sludge, ‘biowaste’, manure and manure plus co-substrates. Cumula­tive fossil energy demand for methane from these wastes was typically in the order of approximately 45% of the fossil reference. The outcomes of the study of Zah et al. (2007) are more favourable to transport biofuels made from wastes than to transport biofuels made from food crops. Zwart et al. (2006) made a more detailed study of the conversion of manure from cattle and swine into biogas (methane) in the Netherlands and concluded that the fossil fuel input energetically roughly equalled the biogas output. One should keep in mind that these outcomes are based on the assumption that life cycle impacts up to the waste can be neglected. When wastes change into secondary resources, fetching a price, or when the seed-to-wheel allo­cation is based on mass or energy, this would raise cumulative fossil energy demand of transport biofuels made from residues (cf. Reijnders and Huijbregts 2005).