NEW POWER OPPORTUNITIES

There are a number of opportunities for new power sources aside from replacing petroleum for transportation. Beginning at the small end of the scale, alternatives to today’s battery chemistry are in critical demand. Proliferation of portable electronics and increasing functionality has exceeded the capabilities of the lith­ium-ion battery. Indeed, the features able to be offered to consumers by the major electronics development companies are limited by the battery, an example being the delay of mass introduction of the 4G cell phone. Many outside of Japan may not be familiar with these phones, known as “power eaters,” which last for all of 15 minutes when being used to watch television or movies. The Japanese suffer through this shortfall because their long daily work commutes are brightened by the entertainment. Batteries’ limitations have at least created a new market oppor­tunity, known as “juice bars,” where the Japanese cannot only receive liquid refreshment, but for a fee can recharge their cell phones as well.

This, of course, is a temporary solution to an obvious problem: the need for new portable power sources. Fuel cells have been studied for over 40 years as a potential battery replacement technology. With a potential $4-billion-plus lithium battery market takeover opportunity, there are a plethora of entities working to deliver portable fuel cells [2]. The Direct Methanol Fuel Cell (DMFC) has probably received the majority of attention in this area. Despite hundreds of millions in research and development dollars, in early 2005 there is no consumer product on the market. DMFC has applications and viability in other markets, but the size, cost, and performance requirements for rechargeable battery replace­ment have thus far proved insurmountable. New catalyst developments as well as new membrane technology may push DMFCs over the hump to widespread commercialization; however, toxicity will remain a serious obstacle.

Enter the opportunity for fuels other than methanol in the portable battery market. Ethanol is the obvious choice because it is already widely available in day-to-day life and on airlines as well, a necessity. Additionally, ethanol has certain chemical properties making it desirable as a fuel, such as higher energy density than methanol while remaining a small enough molecule for good diffu­sion properties. As discussed in this book, innovations in catalysts are required to employ ethanol. Efficacy has been demonstrated; however, catalyst stability and operating temperature must still be addressed for metal-based systems.

Perhaps a previously considered fringe effort, now gaining momentum, is the use of nontraditional catalysts, i. e., biological catalysts. The advantages are cost savings from elimination of precious metals, simplification of system design due to high selectivity for analyte, dramatically increased fuel options, and efficient operation at room temperature, among others discussed. Enzymes in particular, have the potential to compete (and in some cases already are competing) with DMFC and DEFCs and surpass their performance. It may be breakthroughs in this area of research that ultimately enable commercial applications. Elimination of PEMs, bipolar plates, and precious metal catalysts are significant advantages.

SOFC fuel cells have also had a resurgence of effort, most likely driven by military interest. Advances in catalysts and insulating materials are showing promise for portable applications, portable meaning 20-W systems.

Overall, it is the opinion of this author that the portable fuel cell effort emerged too early for its time. Hundreds of millions of dollars, if not billions, have been taken in by start-up companies through institutional, noninstitutional, and government sources over the past 10+ years with no product to show for it. The technology continues to suffer from essentially the same key hurdles that it did since the start of effort. Many investors are losing interest and have become calloused to the excitement surrounding portable fuel cells. That is unfortunate because we are nearing the opportune time for this market. Key breakthroughs are on the verge of occurring, which will hopefully burst the bubble and pave the way for commercial applications. Some venture firms recognize this oppor­tunity and are sticking with fuel cells in the belief that we are near the gold rush.