Energy Plantation

The plantation will consist of hybrid poplar trees (at 600 trees per acre) planted in a “lawn” of Dutch white clover. During the first year of growth, the young trees can tolerate no competition from weeds and require irrigation in order to become established. The project will mow the “lawn” with a bagging commercial mower to remove the clippings, which will then be dehydrated and used as a base for fish feed, or used to produce compost. Colonies of honeybees will be estab­lished to forage on the clover, since these plants produce an excellent water-white honey. As a result, the project will harvest 3 different crops from the same piece of land. The trees are ready to harvest the 5th year and will regenerate to harvestable size every 3 years thereafter. One pound of hardwood chips generates approximately 7500 BTUs of energy and poplar contains about 60% of this value — or about 4500 BTUs per pound. This reduction in heat value is more than offset by the rapid growth and regeneration. Poplar also absorbs and stores more carbon dioxide during growth than the wood gives off when used as a fuel source. Harvest will commence after leaf drop and when the ground is frozen to reduce turf damage. The project will use a feller/buncher to cut the trees, which are then placed in windrows. A self-propelled chipper reduces the entire tree into 2» or less sized chips — this size being optimal for the gasifier. Chips can then be stored in a silo that self-feeds directly into the gasifier. After this point the entire system is automatic and needs no operator — all that is required is a continuous supply of feedstock (chips). At the heart of this phase is a gasification unit, which heats and thermally degrades the biomass in a chamber devoid of oxygen. The gas generated from this heating (pyrolysis) is extracted, filtered, cooled, and stored. It contains approximately 50% of the BTUs in natural gas and can be used for electric, heat generation, or transportation. The difference here is that gasification can utilize so many other different feedstocks that are unsuitable for the first phase. There is no exhaust from this process, since there is no active combustion, as a result, there is no pollution. The “exhaust” is actually the gas produced. The gasification unit can also be configured to produce methanol (wood alcohol), which is used in the conversion (transesterification) of raw and used vegetable oil into biodiesel. It can also produce dimethylether (“DME”), a clean­burning replacement for diesel fuel, or #2 home heating fuel — depending on the configuration. Solids and nutrient ash from wood biomass pyrolysis can be incorporated into compost as a bulking/nutrient agent. Inert solids remaining from plastic and tire pyrolysis can be used for making asphalt paving products or concrete blocks. The only feedstock under consideration that is not carbon-cycle neutral is plastic.