Possible further applications

The findings reported in this chapter have been obtained from a specific region in Japan. However, Fe is the third most abundant metal found in the soil (Spark, 1995), and Fe — oxidizing bacteria are not rare (Emerson et al., 1999; Emerson & Weiss, 2004; James & Ferris, 2004). Thus, this method can be applicable in many places, provided suitable aquatic conditions supporting the growth of Fe-oxidizing bacteria (low concentration of oxygen and circumneutral pH) are available. In addition, the immersed woody carrier can be applied directly to agricultural land in the form of a fertilizer, without P extraction procedures, which are commonly required for P recovery methods. Therefore, this method is a low-cost technique that should contribute to P resource recycling and the improvement of the aquatic environment, if adopted on a large scale.

4. Conclusions

A new method of P recovery from natural water bodies using Fe-oxidizing bacteria and woody biomass (Japanese cedar and Japanese cypress) was applied in an agricultural canal during irrigation and non-irrigation periods. The amounts of P adsorbed on the carrier during these periods were 0.332-0.350 and 0.172-0.187 g/kg, respectively, while the PO4-P concentrations of the water were 0.058 and 0.022 mg/L. Expressed these values in parts per million, the P adsorbed on the carrier was 5,700- to 8,500-fold more concentrated than the P dissolved in water. The P on the carrier was 8- to 17-fold higher than the required level for sufficient fertility to support rice production, and it was categorized in the range of high- fertility soil. Some traces of heavy metals adsorbed on the carrier were detected, but they were much lower than the regulation levels. In addition, the woody carrier can be applied directly to agricultural land without P extraction. Therefore, this method is a low-cost technique that should contribute to P resource recycling and the improvement of aquatic environment.

5. Acknowledgement

This study was partially supported by a grant from the Shimane University Priority Research Project and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (#20380179).