X-ray absorption spectroscopy (XAS)

XAS specifically examines the local structure of elements in a sample. The structure of a material is deduced on theoretical basis, but usually the interpretation of XAS spectra is founded on databases of known structures. This technique is useful in the case of heterogeneous samples and a wide variety of solid materials can be examined directly and non-destructively. Also the structure of amorphous phases can be easily achieved, as the local structure does not depend on long-range crystalline order. The application of XAS varies from the trace element concentration up to that of major elements. So it is useful to speciate trace elements adsorbed on the surface of biomass. X-ray absorption spectroscopy consists in the absorption of high energy X-rays by an atom in a sample. This absorption takes place at the energy corresponding to the binding energy of the electron in the sample. The interaction of ejected electrons with the surrounding atoms produces the observed spectrum. (XAS) and extended X-ray absorption fine structure (EXAFS) were used to ascertain the ligands involved in metal binding and the coordination environment for Cr3+ bound to alfalfa shoot biomass by Tiemann et al., 1999, and by Gardea-Torresday et al., 2002.