Production of enriched biomass by carotenoid-forming yeasts

1.1 Characterization of red (carotenogenic) yeasts

1.1.1 Taxonomy

Yeasts belong to the kingdom Fungi (Mycota) — a large group of eukaryotic organisms that includes microorganisms such as yeasts and moulds. Some species grow as single-celled yeasts that reproduce by budding or binary fission. Dimorphic fungi can switch between a yeast phase and a hyphal phase in response to environmental conditions. The fungal cell wall is composed of glucans and chitin. Another characteristic shared with plants includes a biosynthetic pathway for producing terpenes that uses mevalonic acid and pyrophosphate as chemical building blocks (Keller et al., 2005). Fungi produce several secondary metabolites that are similar or identical in structure to those made by plants. Fungi have a worldwide distribution, and grow in a wide range of habitats, including extreme environments such as deserts or areas with high salt concentrations or ionizing radiation, as well as in deep sea sediments. Some can survive the intense UV and cosmic radiation. Around 100,000 species of fungi have been formally described by taxonomists, but the global biodiversity of the fungus kingdom is not fully understood. There is no unique generally accepted system at the higher taxonomic levels and there are frequent name changes at every level, from species upwards. Fungal species can also have multiple scientific names depending on their life cycle and mode (sexual or asexual) of reproduction. The 2007 classification of Kingdom Fungi is the result of a large-scale collaborative research. It recognizes seven phyla, two of which—the Ascomycota and the Basidiomycota—are contained within a branch representing subkingdom Dikarya (Hibbett, 2007).

The Ascomycota constitute the largest taxonomic group within the Eumycota. These fungi form meiotic spores called ascospores, which are enclosed in a special sac-like structure called an ascus. This phylum includes single-celled yeasts (e. g., of the genera Saccharomyces, Kluyveromyces, Pichia, and Candida), and many filamentous fungi living as saprotrophs, parasites, and mutualistic symbionts.

Some yeast species accumulate carotenoid pigments, such as P-carotene, torulene, and thorularodin which cause their yellow, orange and red colours and are therefore called red yeasts. Carotenogenic yeasts are a diverse group of unrelated organisms (mostly Basidiomycota) and the majority of the known species are distributed in four taxonomic groups: the Sporidiobolales and Erythrobasidium clade of the class Urediniomycetes, and Cystofilobasidiales and Tremellales of the class Hymenomycetes (Libkind et al., 2005). Along with the most known producer Phaffia rhodozyma, there is evidence of the capacity for carotene formation by other well-known pigmented yeasts of the genus Rhodotorula (order Sporidiobolales). The composition and amount of the carotenoid pigments in numerous natural isolates of the genera Rhodotorula/ Rhodosporium and Sporobolomyces/Sporidiobolus were studied in detail (Yurkov et al., 2008).

At this time the number of red yeasts species Rhodotorula, Rhodosporidium, Sporidiobolus, Sporobolomyces, Cystofilobasidium, Kockovaella and Phaffia are known as producers of carotene pigments. Many of these strains belong to oleaginous yeasts, some of them can effectively remove heavy metals from industrial effluents and detoxify certain pollutants. Studies with yeast mutants or carotenoid biosynthesis inhibitors have shown that carotenoid-deficient yeast strains are sensitive to free oxygen radicals or oxidizing environment, and that this sensitivity can be relieved by the addition of exogenous carotenoids (Davoli et al., 2004). The major yeast pigments are |3-carotene, y-carotene, torulene, torularhodin and astaxanthin (Dufosse, 2006).