Membrane fouling control and cleaning

It is generally accepted that the optimal operation of an MBR depends on understanding membrane fouling (Judd, 2007). Abatement of fouling leads to elevated energy demands and has become the main contribution to OPEX (Verrech et al., 2008). In addition, uncertainty associated with this phenomenon has led to conservative plant designs where the supplied energy is so far to be optimised.

Traditional strategies for fouling mitigation such as air sparging, physical cleaning techniques (i. e backflushing and relaxation) and chemical maintenance cleaning have been incorporated in most MBR designs as a standard operating strategy to limit fouling. Air sparging, expressed as specific aeration demand SADm, takes a typical value for full-scale facilities between 0.30 Nm3/h m2 (FS configuration) to 0.57 Nm3/h m2 (HF configuration). Relaxation and backflushing (only for HF) are commonly applied for 30-130 seconds every 10-25 min of filtration (Judd, 2010). Frequent maintenance cleanings (every 2-7 d) are also applied to maintain membrane permeability. However, these pre-set fixed values of key parameters, based on general background or the recommendations of membrane suppliers, lead to under-optimised systems and results in loss of permeate and high energy demand. Recently, several authors have proposed a feedback control system for finding optimal operating conditions. For example, Smith et al. (2006) have successfully validated a control system for backflush initiation by permeability monitoring. This system automatically adjusts the backflushing frequency as a function of the membrane fouling, which results in a reduction of up to 40% in the backflushing water required. Ferrero et al. (2011) have used a control system at semi-industrial pilot scale trials based on monitoring membrane permeability, which achieved a energy saving between 7 to 21% with respect to minimun aeration recommended by membrane suppliers.