Advantages and challenges

As already stated, MBRs represent an important technical option for wastewater treatment and reuse, being very compact and efficient systems for separation of suspended and colloidal matter and enabling high quality, disinfected effluents to be achieved. A key advantage of these MBR systems is complete biomass retention in the aerobic reactor, which decouples the sludge retention time (SRT) from the hydraulic retention time (HRT), allowing biomass concentrations to increase in the reaction basin, thus facilitating relatively smaller reactors or/and higher organic loading rates (ORL). In addition, the process is more compact than a conventional activated sludge process (CAS), removing 3 individual processes of the conventional scheme and the feed wastewater only needs to be screened (1­3 mm) just prior to removal of larger solids that could damage the membranes (Figure 1).

image171

Fig. 1. Conventional activated sludge process (a) and MBR in both configurations: immersed (b1) and sidestream (b2)

Notwithstanding the advantages of MBRs, the widespread implantation is limited by its high costs, both capital and operating expenditure (CAPEX and OPEX), mainly due to membrane installation and replacement and high energy demand. This high energy demand in comparison with a CAS, is closely associated with strategies for avoiding/mitigating membrane fouling (70% of the total energy demand for iMBR) (Verrech et al., 2008; Verrech et al., 2010). Fouling is the restriction, occlusion or blocking of membrane pores or cake building by solids accumulation on the membrane surface during operation which leads to membrane permeability loss. The complexity of this phenomenon is linked to the presence of particles and macromolecules with very different sizes and the biological nature of the microbial suspensions, which results in a very heterogenic system. Meanwhile, the dynamic behaviour of the filtration process adds a particular complication to the fouling mechanisms (Le-Clech et al., 2006). Furthermore, permeability loss can also be caused by channel clogging, which is the formation of solid deposit in the voids of the membrane modules due to local breakdown of crossflow conditions (Figure 2). In addition, there are other operational problems, such as the complexity of the membrane processes (including specific procedures for cleaning), the tendency to form foam (partly due to excessive aeration), the smaller sludge dewatering capacity and the high sensitivity shock loads.

image172

Fig. 2. a/b/c. Membrane module clogged. Debris can be observed located between the top headers modules forming a bridge between them (Morro Jable wastewater treatment plant, Canary Island, Spain; courtesy of CANARAGUA, S. A.)

For the immersed configuration, the operating strategy to control membrane fouling, ( impacting directly or indirectly on CAPEX and OPEX) includes the following:

i. selecting an appropriate permeate flux,

ii. scouring of membrane surface by aeration,

iii. applying physical cleaning techniques, like backflushing (when permeate is used to flush the membrane backwards) and relaxation (when no filtration takes place), and

iv. applying chemical cleanings protocols, with different frequency and intensity (maintenance cleaning and recovery cleaning).

The fist concern, selecting an appropriate permeate flux, is determined by the classical trade­off problem: at higher fluxes CAPEX decreases while OPEX increases. High fluxes are desirable to reduce the membrane required (i. e. reduce CAPEX), however, membrane fouling increases with flux, which results in a higher membrane scouring demand and more frequent cleaning to control membrane fouling (i. e. increase OPEX). Furthermore, the correlation between membrane fouling and flux is not only influenced by hydrodynamics and cleaning protocols but also by feedwater characteristics and biological conditions. As a result, deciding a flux value depends on the analysis of empirical data obtained from pilot and full-scale experiments or available in the recent literature.

The second concern is membrane scouring. Ever since the iMBR appeared, air sparging has been widely used to mitigate fouling by constant scouring of the membrane surface (Cui et al., 2003) or by causing lateral fibre movement in HF configuration (Wicaksana et al., 2006). While the membrane fouling has been studied and mathematically modelled in classic filtration regimes (crossflow and dead-end) (e. g. Foley, 2006), the effect of turbulence induced by gas sparging in iMBR systems is still being assessed (Drews, 2010). As is well known, it has a clear contribution to minimizing the fouling problem, and therefore, a deeper understanding is extremely important in order to optimise aeration mode and rate, which has been proved to be one of its major operational costs.

The third concern is related to methods of physical cleaning (relaxation and backflushing) that have been incorporated as standard operation mode in MBRs. These techniques have successfully been proved to remove reversible fouling caused by pore blocking or sludge cake. For backflushing, the key parameters in the design of physical cleaning have been identified as frequency, duration, the ratio between these two parameters and its intensity (Le-Clech et al., 2006), and the same key parameters are expected for relaxation (with the exception of intensity). However, there is a knowledge gap in the inter-relationships between those parameters and the imposed permeate flux, especially when comparing both methods to obtain the same water productivity (Wu et al., 2008).

Finally, the fourth concern is chemical cleaning. Chemical cleaning is required when fouling cannot be removed by membrane surface scouring or physical cleaning methods. Although there are several types of chemical reagents used in membrane cleaning, in most full-scale facilities, two types of chemical reagents are commonly used: oxidants (e. g. NaOCl) for removing organic foulants (e. g. humic substances, proteins, carbohydrates), and organic acids (e. g. citric) for removing inorganic scalants. Basically, two objectives are pursued in the addition of chemical reagents: maintaining membrane permeability and permeability recovery. Maintenance cleaning is applied routinely via a chemically enhanced backflush where the reagent, at moderate concentration, is introduced with the permeate. In contrast, recovery cleaning is applied when the membrane permeability decreases until reaching non­operative values. The procedure consists of taking off the modules or draining off the membrane tanks to allow the membranes to be soaked in high concentrated reagents. Each MBR supplier has his own protocols which differ in concentrations and methods. Given its impacts on membrane lifetime and therefore on OPEX, there has recently been a growing interest in studying the influence of chemical cleaning procedures on membrane permeability maintenance and recovery (Brepols et al., 2008; Ayala et al., 2011). However, at the moment, the optimization of chemical cleaning protocols is far from being fully resolved.