Salinity

In the semi-arid agricultural areas of the world, soil salinization is closely linked to the extensive use of artificial irrigation, which in combination with extended dry seasons, very quickly turns formerly productive areas practically into deserts. In the future, this effect will even increase due to the high demand of water from other non agriculture sectors (i. e. industry, overpopulated cities), whereas the possibilities to increase any crop’s productivity through irrigation will necessarily decrease. Apart from irrigated areas, salinity is a major management problem in many unirrigated rainfed areas.

Dryland salinity ranges from a slightly saline soil condition which reduces crop growth to extensive areas where cultivation is almost impossible. This constraint has been a threat to the land and water resources in several parts of the world including the SAT, although the seriousness of the problem well realized in recent years. All the crops are affected by salinity while they vary in their degree of response as some of them being tolerant while others are sensitive.

1.2.1 Cereals Pearl millet

Soil salinity is a major problem for pearl millet [Pennisetum glaucum (L.) R. Br.] production in the arid and semi-arid zones of south Asia and West-Africa (Blummel et al. 2003). Pearl millet also remains as a potential crop to grow in the rice fallows of saline areas in south Asia, where typical increases of salinity levels during post-rainy season prevent crop production. Compared to other crop species, Pearl millet and its wild relatives are rated to be fairly tolerant to salinity (Maas and Hoffman 1977; Shannon 1984; Krishnamurthy et al.

2007) and provide an option while selecting crops that can be more profitably grown in saline soils.

Lack of a single reproducible screening protocol and lack of knowledge on trait(s) that confer yield under salinity is a great limitation to breeding tolerant varieties. Field screening under salinity stress may not be effective because of the extent of variability in salinity experienced within a single field and among plots even at shorter distances (Richards and Dennet 1980). Pearl millet seems to be sensitive at germination stage in ECe of 16 dS m-1 and beyond but this sensitivity is to some extent compensated by the tillering capability (Dua 1989). However, it seems that salinity response estimated at germination stage does not correlate well with plant performance at later stages (Munns and James 2003; Krishnamurthy et al. 2007).

Na+ exclusion and grain K/Na ratios were suggested to be reliable traits for selection. However, their usefulness as selection criteria (Munns and James 2003; Poustini and Siosemardeh 2004) could not be emphasized when five cultivars in pearl millet used for this association study (Ashraf and McNeilly 1987) where as leaf Na+ contents or the K+/Na+ and the Ca++/Na+ ratios assessed with 100 ICRISAT breeding lines were found to explain the biomass productivity at flowering time (Krishnamurthy 2007). Therefore this relationship of Na-based ratios needs to be evaluated with a wider range of genotypes and in association with the grain yield. Overall, it seems that although various aspects have been related to tolerance, the variation in whole plant reaction to salinity has been suggested to provide the best means of initial isolation of salinity tolerant genotypes (Shannon 1984; Ashraf and McNeilly 1987).

Large genotypic variation was reported to exist in pearl millet for salinity response in terms of whole plant response (Ashraf and McNeilly 1987; 1992; Dua 1989). Moreover, availability of high levels of tolerance in other species of Pennisetum (Ashraf and McNeilly 1987; 1992; Muscolo et al. 2003) and within the P. glaucum (Dua 1989) offers a scope for understanding the traits related to tolerance and to integrate these tolerant crop species/genotypes into appropriate management programs to improve the productivity of the saline soils. A total shoot biomass productivity ranging from 9 to 12 t ha-1 and a grain yield from 3.1 to 4.9 t ha-1 recorded in normal Alfisol fields at Patancheru, India (van Oostrom et al. 2002) got reduced to an average of 3.3 t shoot biomass and 1.1 t ha-1 grain yield of 15 germplasm accessions when grown in a 10 dS m-1 saline vertisols at Gangavathi, Karnataka, India (Kulkarni et al.

2006) .

Sorghum

Sorghum is characterized to be moderately tolerant to salinity (Maas, 1985; Igartua et al., 1995) with a large genotypic variation reported. It is considered relatively more salt tolerant than maize, the cereal crop ranking first in productivity globally (Maas, 1985). Therefore, sorghum has a good potential for salt affected areas (Ayers & Westcott, 1985; Igartua et al.,

1994) .

There are limited successes in enhancing crop yields under salinity stress as available knowledge of the mechanisms of salt tolerance has not been converted into useful selection criteria to evaluate a wide range of genotypes within and across species. Attempts have been made to evaluate salt tolerance at germination and emergence stages in grain sorghum (Igartua et al., 1994; Krishnamurthy et al. 2007), and large genotypic differences were reported, but this early evaluation appears to have little relation with overall performance under saline conditions (Munns et al., 2002; Krishnamurthy et al. 2007). Though Na+ exclusion and grain K+/Na+ ratios have been suggested to be reliable traits for selecting salt tolerant crops (Munns & James, 2003; Munns et al., 2002; Poustini & Siosemardeh, 2004; Netondo et al., 2004; Krishnamurthy et al. 2007), the value of that trait has not been used in a large scale. Therefore, there is a need to identify traits associated with salinity tolerance, and simple, high throughput, repeatable screening methods to evaluate large number of genotypes. In fact, the variation in whole-plant biomass responses to salinity was considered to provide the best means of initial selection of salinity tolerant genotypes (Shannon, 1984; Ashraf & McNeilly, 1987), prior to the evaluation on the basis of specific traits.

Some of the known salt tolerant genotypes (n=29) of sorghum have been reported to yield in the range of 1.5 to 4.2 t ha-1 in naturally occurring saline soils with an average ECe of 10 dS m-1 at the Agricultural Research Station, Gangavathi, Karnataka, India (Reddy et al. 2010). However the grain yield range was much superior (4.7 to 6.0 t ha-1) for the hybrids that were tested along the germplasm lines under similar saline field conditions.

1.2.2 Legumes

Chickpea

Chickpea (Cicer arietinum L. ) is sensitive to salinity (Flowers et al. 2010). The decline in the area sown to chickpea in traditional chickpea-growing areas of northern India and the Indo — Gangetic Plain (Gowda et al. 2009) is partly due to increased soil salinity and increased use of brackish water for irrigation. If this decline is to be reversed, then resistance of existing chickpea varieties to salinity needs to be improved. Since management options are often too expensive for small-holder farmers to adopt, breeding and selection of salinity-resistant varieties remains a more practical and immediate option.

Until recently, little genetic variation for salinity resistance had been observed in chickpea (Saxena 1984; Dua 1992; Johansen et al. 1990). However, recently a large range of variation (Vadez et al. 2007; Krishnamurthy et al. 2011) was found to exist in seed yield of 265 chickpea genotypes grown in artificially-salinized soils watered to field capacity with 80 mM sodium chloride. Further, it was found that the seed yield under salinity in chickpea was closely associated with time to flowering and to the seed yield under non-saline conditions.

Several reports have shown that the resistance to salinity in chickpea is related to the resistance of reproduction (Mamo et al., 1996; Katerji et al., 2001). Salinity resistance indeed had been shown to be associated with the capacity to maintain a large number of filled pods, rather than to the capacity to grow under salt stress (Vadez et al., 2007), indicating that salt stress may have a deleterious effect on flower/pod production and retention. Yet, reproductive success may have been conditioned by the late-sown conditions in which the previous work was carried out (Vadez et al., 2007) and needs to be validated with sowing at the normal sowing time.

As salinity is likely to be an increasing problem in a warming and drying world, especially for relatively sensitive crops such as chickpea, it is important to make sources of resistance available to the breeding community by systematically screening a representative set of germplasm. To date, only the mini-core collection of chickpea germplasm has been evaluated for salinity resistance (Vadez et al., 2007). This mini-core collection is based on morphological and agronomic traits (Upadhyaya and Ortiz 2001) and not a systematic screening for diversity of molecular markers. More recently, a reference collection of chickpea has been assembled using marker data from 50 SSR markers screened in over 3,000 genotypes (Upadhyaya et al., 2006). Although the reference collection includes all the germplasm in the mini-core collection, 89 additional entries of cultivated chickpea with additional molecular variability have been identified (Upadhyaya et al. 2008).

Groundnut

spite of the importance of the constraint as well as the crop very little has been published with groundnut being affected by soil salinity. In a salinity tolerance screening saturating soil once with with 80 mM NaCl solution and testing 288 groundnut genotypes/ germplasm accessions it has been found that the shoot biomass productivity was the least affected (0­30%) while the pod yield was affected by 50 to 100%. However there were genotypes that could produce pod yields >half of the control but these were very few (Srivastava 2006).

Pigeonpea

Pigeonpea is one of the major legume crops grown in the semi arid tropics, particularly in India. Its high sensitivity to salinity coupled with the dry growing environment pose a major constraint to crop production in certain areas. Salinity affects plant growth, development and yield of pigeonpea. However the quantum of work that had been carried out with pigeonpea under salinity is scarce. A study involving a tolerant (ICPL227) and a sensitive (HY3C) cultivated pigeon pea genotypes and some tolerant (Atylosia albicans, A. platycarpa and A. sericea) and sensitive (Rynchosia albiflora, Dunbaria ferruginea, A. goensis and A. acutifolia) wild relatives tested over a range of salinity levels (0, 4, 6, 8 and 10 dS/m) have shown that transpiration rate decreased with increasing salinity in tolerant and sensitive pigeon pea genotypes alike, while key difference was the greater salinity tolerance of A. albicans, A. platycarpa and A. sericea was associated with efficient sodium and chloride regulation in the plant system (Subbarao et al. 1990).

Shoot sodium concentrations of the tolerant wild species were found to be 5 to 10 times less than those of the sensitive species, while root sodium concentrations in the tolerant species were 2 to 3 times higher than in the sensitive species. Thus the efficiency of regulation of ion transport to shoots seemed to explain the differences in salinity response among pigeon pea genotypes and related wild species. Srivastava et al. (2007) assessed the morphological and physiological variation in pigeonpea for salinity tolerance in 300 genotypes, including the mini core collection of ICRISAT, wild accession and landraces from putatively salinity — prone areas worldwide. A large range of variation in salinity susceptibility index and the percent relative reduction (RR %) in both cultivated and wild accessions were shown to exist. Also less Na+ accumulation in shoot was indicative tolerance and this relationship was limited to the cultivated material. Some of the wild species reported tolerant are C. platycarpus, C. scarabaeoides and C. sericea whereas C. acutifolius, C. cajanifolius and C. lineata were more sensitive. In another study, six pigeonpea genotypes were tested under five different NaCl concentrations (0, 50, 100, 125, 150 mM) under controlled conditions. Salt concentration of 75 mM was identified to be the critical one as it reduced the biomass production by an average 50%. For pigeonpea, as SCMR was positively associated with higher biomass under salinity, SCMR was suggested to be an early indicator for salinity tolerance. The Na+ accumulation did not help to be of any indication of tolerance in pigeonpea.