Historical Development of Bioethanol as a Fuel

1.1 ETHANOL FROM NEOLITHIC TIMES

There is nothing new about biotechnology. Stated more rigorously, the practical use — if not the formal or intuitive understanding of microbiology — has a very long history, in particular with regard to the production of ethanol (ethyl alcohol). The development of molecular archaeology, that is, the chemical analysis of residues on pottery shards and other artifacts recovered from archaeological strata, has begun to specify discrete chemical compounds as markers for early agricultural, horticultural, and biotechnological activities.1 Among the remarkable findings of molecular archae­ology, put into strict historical context by radiocarbon dating and dendrochronology techniques, as well as archaeobotanical and archaeological approaches, are that

• In western Asia, wine making can be dated as early as 5400-5000 BC at a site in what is today northern Iran and, further south in Iran, at a site from 3500 to 3000 BC.1

• In Egypt, predynastic wine production began at approximately 3150 BC, and a royal wine-making industry had been established at the beginning of the Old Kingdom (2700 BC).2

• Wild or domesticated grape (Vitis vinifera L. subsp. sylvestris) can be traced back to before 3000 BC at sites across the western Mediterranean, Egypt, Armenia, and along the valleys of the Tigris and Euphrates rivers. This is similar to the modern distribution of the wild grape (used for 99% of today’s wines) from the Adriatic coast, at sites around the Black Sea and southern Caspian Sea, littoral Turkey, the Caucasus and Taurus mountains, Lebanon, and the islands of Cyprus and Crete.3

• Partial DNA sequence data identify a yeast similar to the modern Saccha — romyces cerevisiae as the biological agent used for the production of wine, beer, and bread in Ancient Egypt, ca. 3150 BC.2

The occurrence of V. vinifera in regions in or bordering on the Fertile Crescent that stretched from Egypt though the western Mediterranean and to the lower reaches of the Tigris and Euphrates is crucial to the understanding of Neolithic wine making. When ripe, grapes supply not only abundant sugar but also other nutrients (organic and inorganic) necessary for rapid microbial fermentations as well as the causative yeasts themselves — usually as “passengers” on the skins of the fruit. Simply crushing (“pressing”) grapes initiates the fermentation process, which, in unstirred vessels (i. e., in conditions that soon deplete oxygen levels), produces ethanol at 5-10% by volume (approximately, 50-100 g/l).

In China, molecular archaeological methodologies such as mass spectroscopy and Fourier transform infrared spectrometry have placed “wine” (i. e., a fermented mixture of rice, honey, and grape, as well as, possibly, other fruit) as being produced in an early Neolithic site in Henan Province from 6500 to 7000 BC.4 Geographically, China lies well outside the accepted natural range of the Eurasian V. vinifera grape but is home to many other natural types of grape. Worldwide, the earliest known examples of wine making, separated by more than 2,000 km and occurring between 7000 and 9000 years ago, were probably independent events, perhaps an example on the social scale of the “convergent evolution” well known in biological systems at the genetic level.

The epithet “earliest” is, however, likely to be limited by what physical evidence remains. Before domestication of cereals and the first permanent settlements of Homo sapiens, there was a long but unrecorded (except, perhaps, in folk memory) history of hunter-gatherer societies. Grapes have, in some botanical form or other, probably been present in temperate climates for 50 million if not 500 million years.3 It would seem entirely possible, therefore, that such nomadic “tribes” — which included shamans and/or observant protoscientists — had noted, sampled, and replicated natural fermentations but left nothing for the modern archaeologist to excavate, record, and date. The presently estimated span of wine making during the last 9000 years of human history is probably only a minimum value.

Grape wines, beers from cereals (einkorn wheat, one of the “founder plants” in the Neolithic revolution in agriculture was domesticated in southeastern Turkey, ca. 8000 BC), and alcoholic drinks made from honey, dates, and other fruits grown in the Fertile Crescent are likely to have had ethanol concentrations below 10% by volume. The concentration of the ethanol in such liquids by distillation results in a wide spectrum of potable beverages known collectively as “spirits.” The evolution of this chemical technology follows a surprisingly long timeline:56 [1]

Distillation yields “95% alcohol,” a binary azeotrope (a mixture with a constant composition) with a boiling point of 78.15°C. “Absolute” alcohol, prepared by the physical removal of the residual water, has the empirical formula C2H6O and molecular weight of 46.07; it is a clear and colorless liquid with a boiling point of 78.5°C and a density (at 20°C) of 0.789 g/mL. Absolute alcohol absorbs water vapor rapidly from the air and is entirely miscible with liquid water. As a chemical known to alchemists and medicinal chemists in Europe and Asia, it found many uses as a solvent for materials insoluble or poorly soluble in water, more recently as a topical antiseptic, and (although pharmacologically highly difficult to dose accurately) as a general anesthetic. For the explicit topic of this volume, however, its key property is its inflammability: absolute alcohol has a flash point of 13°C.7

By 1905, ethanol was emerging as the fuel of choice for automobiles among engineers and motorists,* opinion being heavily swayed by fears about oil scarcity, rising gasoline prices, and the monopolistic practices of Standard Oil.8 Henry Ford planned to use ethanol as the primary fuel for his Model T (introduced in 1908) but soon opted for the less expensive alternative of gasoline, price competition between ethanol and gasoline having proved crucial. The removal of excise duty from dena­tured ethanol (effective January 1, 1907) came too late to stimulate investment in large-scale ethanol production and develop a distribution infrastructure in what was to prove a narrow window of opportunity for fuel ethanol.8

Ford was not alone in considering a variety of possible fuels for internal com­bustion engines. Rudolf Diesel (who obtained his patent in 1893) developed the first prototypes of the high-compression, thermally efficient engine that still bears his name, with powdered coal in mind (a commodity that was both cheap and readily available in nineteenth-century Germany). Via kerosene, he later arrived at the use of crude oil fractions, the marked variability of which later caused immense practi­cal difficulties in the initial commercialization of diesel engines.9 The modern oil industry had, in effect, already begun in Titusville, Pennsylvania, in the summer of 1859, with a drilled extraction rate of 30 barrels a day, equivalent to a daily income of $600.10 By 1888, Tsarist Russia had allowed Western European entrepreneurs to open up oil fields in Baku (in modern Azerbaijan) with a productive capacity of 50,000 barrels a day. On January 10, 1901, the Spindletop well in Texas began gushing, reaching a maximum flow of 62,000 barrels a day. Immediately before the outbreak of World War I, the main oil-producing countries could achieve out­puts of more than 51 million tons/year, or 1 million barrels a day. In 1902, 20,000 vehicles drove along American roads, but this number had reached more than a million by 1912. These changes were highly welcome to oil producers, including (at least, until its forced breakup in 1911) the Standard Oil conglomerate: kerosene intended for lighting domestic homes had been a major use of oil but, from the turn of the century, electricity had increasingly become both available and preferable (or fashionable). The rapid growth in demand for gasoline was a vast new market for J. D. Rockefeller’s “lost” oil companies.

Greatly aiding the industry’s change of tack was the dominance of U. S. domestic production of oil: in 1913, the oil produced in the United States amounted to more [2]

image3

than 60% of the worldwide total (figure 1.1). The proximity within national boundar­ies of the world’s largest production line for automobiles (in Detroit) and oil refining capacities firmly cast the die for the remainder of the twentieth century and led to the emergence of oil exploration, extraction, and processing, and the related petrochemi­cal industry as the dominant features of the interlinked global energy and industrial feedstock markets.

Nevertheless, Henry Ford continued his interest in alternative fuels, sponsoring conferences on the industrial uses of agricultural mass products (grain, soybeans, etc.) in 1935-1937; the Model A was often equipped with an adjustable carburetor designed to allow the use of gasoline, alcohol, or a mixture of the two.11