Factors affecting the reflectivity of the canopy surface

Measurements of the reflectance spectra of crop canopies are affected by both sampling conditions and canopy features. The most important are detailed in the following sections.

1.1.1 Sensor position

The angles between sun, sensor and canopy surface may lead to the appearance of shadow or soil background in the field of view of the apparatus, causing disturbing effects in the spectra measured (Aparicio et al., 2004; Baret and Guyot, 1991; Eaton & Dirmhirn, 1979). The angle of the sun is more important in canopies with low LAI (Kollenkark et al., 1982; Ranson et al., 1985). Variability in reflectance due to variation in the sensor view angle has been reported to depend on the stage of development of the crop (J. A. Smith et al., 1975), the structure of the vegetative canopy (Colwell, 1974) and the leaf area index (Aparicio et al.,

2004) . Angles between the sensor azimuth and the sun azimuth of between 0° and 90° minimize the variability caused by changes in the elevation of the sensor or the sun (Wardley, 1984). However, when off-nadir view angles are used, the analysis of the remote sensing data could be complicated due to the non-Lambertian characteristics of vegetation (unequal reflection of incident light in all directions and reflection depending on the wavelength) (Ranson et al., 1985). The degree of canopy cover captured by the sensor is minimum at nadir position, and increases with the angle of observation. The effect of angle is particularly important in crops arranged in rows, which may have different orientations in relation to the solar angle and the observation angle (Ranson et al., 1985; Wanjura & Hatfield, 1987). The nadir position of the sensor (sensor looking vertically downward) is the most widely used, because it has a low interaction with sun position and row orientation and delays the time at which spectra become saturated by LAI (Araus et al., 2001).