Multi return

The capability of detecting different returns in the closely placed terrain surfaces depends on instrument parameters such as the laser pulse width (the shorter the better), detector sensitivity, response time, the system signal to noise performance, and others. In case of discrete returns more detectors are needed. With this technology the number of pulses between first pulse and last pulse can be recorded as many as the number of detectors. Thus, there are systems with second and third pulse beside first and last pulse record. In contrast to small footprint systems, large footprint systems (10-100 m) open up the possibility of recording the entire return pulse. Discrete return airborne laser systems (ALS) have the benefit of providing data over a large area, but are restricted by their laser pulse return density as points/m2 ratio. Multiple return recording capabilities of system produce point cloud density between 1 and 20 points/m2 optimistically. Often this level of point density is unsatisfactory to produce a comprehensive 3D model, especially in the vertical view (Moorthy et al. 2011).